COMP FET-76
ディレクション
Frédéric BRUN Kevin MOLCARD

開発
Nicolo COMIN Simon CONAN Florian MARIN Vincent TRAVAGLINI
Corentin COMTE Matthieu COURROUBLE François REME

デザイン
Martin DUTASTA Shaun ELWOOD Morgan PERRIER

ベータ・テスター
Chuck CAPSIS Jay JANSSEN William "Wheeliemix" ROBERTSON Chuck ZWICKY
Marco CORREIA "Koshdukai" Luca LEFEVRE Fernando M RODRIGUES
Dwight DAVIES Terry MARSDEN Bernd WALDSTADT
Neil HESTER Paolo NEGRI

マニュアル
Fernando M RODRIGUES Minoru KOIKE Jose RENDON
(автор) Vincent LE HEN Holger STEINBRINK
Leo DER STEPANIAN Charlotte METAIS Jack VAN

© ARTURIA SA – 2019 – All rights reserved.
11 Chemin de la Dhuy
38240 Meylan
FRANCE
www.arturia.com

本マニュアルの情報は予告なく変更される場合があり、それについてArturiaは何ら責任を負いません。許諾契約もしくは秘密保持契約に記載の諸条項により、本マニュアルで説明されているソフトウェアを供給します。ソフトウェア使用許諾契約には合法的使用の条件が規定されています。本製品を購入されたお客様の個人的な使用以外の目的で本マニュアルの一部、または全部をArturia S.A.の明確な書面による許可なく再配布することはできません。

本マニュアルに記載の製品名、ロゴ、企業名はそれぞれの所有者の商標または登録商標です。

Product version: 1.0

Revision date: 17 May 2019
Arturia Comp FET-76をお買い上げいただきありがとうございます！

本マニュアルではComp FET-76の機能と操作方法をご紹介します。
できるだけ早めに製品登録をお願いいたします！Comp FET-76の購入時にシリアルナンバーとアンロックコードをEメールでご案内しております。製品登録時にはこれらが必要となります。

使用上のご注意

仕様変更について：

本マニュアルに記載の各種情報は、本マニュアル制作の時点では正確なものですが、改良のために仕様を予告なく変更することがあります。

重要：

本ソフトウェアは、アンプやヘッドフォン、スピーカーで使用された際に、聴覚障害を起こすほどの大音量に設定できる場合があります。そのような大音量や不快に感じられるほどの音量で本機を長時間使用しないでください。感電や破損、火災やその他のリスクにより重大な事故やケガ、場合によっては死に至る可能性を避けるため、常に後述します基本的な注意事項に従ってご使用ください。難聴などの聴力低下や耳鳴りなどが生じた場合は、直ちに医師の診断を受けてください。また、年に一度は聴力検査などのチェックを受けることをお勧めします。
はじめに
この度はArturia Comp FET-76をお買い上げいただき誠にありがとうございます！

またArturiaはオーディオ関連製品の拡充も続けており、2017年には独自のマイクプリアンプDiscretePRO®を2系統と、最先端のAD/DAコンバーターを搭載したプロスタジオ・クオリティのオーディオインターフェイスAudioFuseを発表しました。特にAudioFuse Studio、AudioFuse 8Preとラインナップを拡充しました。Arturiaとしては比較的新しいエリアとなるオーディオソフトウェア製品として、2018年にはエフェクトバンドルの3 PreAmps You’ll Actually Useを発表しました。このバンドルには1973-Pre、TridA-Pre、V76-Preの3タイトルが入っています。このエフェクトバンドルの投入により、Arturiaはオーディオハードウェアだけでなく、オーディオソフトウェアの分野でもリーディングカンパニーの1つとなりました。

Comp FET-76は、伝説のコンプレッサーをエミュレートしたエフェクトバンドルの3 Compressors You'll Actually Useの中の1つで、最もアイコン的なスタジオコンプレッサーの1つを再現することで、長年蓄積されてきたレコーディングテクニックが得られるオーディオソフトウェアです。

Arturiaでは忠実かつ最良のエミュレーションであることに情熱を注いでいます。そのため、永遠の定番FETコンプレッサーであるUrei 1176のあらゆる点を入念に解析し、その回路の挙動を忠実に再現しました。このユニークなコンプレッサーのサウンドや動作を忠実にモデリングするだけでなく、同機が発表された当時は想像もつかなかったような新しい機能も豊富に追加しています。

Comp FET-76はDAWのプラグインとして動作し、主要なDAWのすべてのプラグインフォーマットに対応しています。

免責事項：本マニュアルに記載のすべての企業名、ブランド名、製品名は各保有者の商標または登録商標であり、Arturiaとは一切関係ありません。商標または登録商標のそれぞれは、Comp FET-76の開発に際して参考にしたことを示すためにのみ使用しています。当該機器のすべての開発者名や企業名はComp FET-76の機能や特徴等を説明するためにのみ使用し、本ソフトウェアの開発に関する助言や援助、関係は一切ありません。

The Arturia team
もくじ

1. ようこそ ... 2
 1.1. コンプレッサーとは？ ... 2
 1.2. コンプレッサーにはどんなタイプがあるの？ .. 2
 1.3. どんな場面でコンプレッサーがよく使われるの？ .. 3
 1.4. Arturia門外不出の技術： TAE® ... 4
 1.5. Comp FET-76に対するArturiaのアプローチ .. 5

2. アクティベーションと最初の設定 .. 6
 2.1. Arturia Comp FET-76ライセンスのアクティベート .. 6

 2.1.1. Arturia Software Center (ASC) .. 6

3. COMP FET-76オーバービュー .. 7
 3.1. プラグイン動作 ... 7
 3.2. Comp FET-76の使いどころ .. 7
 3.3. アドバンストモード ... 8
 3.4. Comp FET-76のシグナルフロー .. 9
 3.5. Comp FET-76ハンズオン ... 11

 3.5.1. コンプレッションの基本 .. 11
 3.5.2. アドバンストモードを使ってみる ... 12

4. COMP FET-76コントロールパネル .. 13
 4.1. 動作モード (モノ/ステレオ) .. 13
 4.2. メイン・コントロールパネル .. 14

 4.2.1. Input ... 14
 4.2.2. Link .. 15
 4.2.3. Output .. 15
 4.2.4. Attack .. 16
 4.2.5. Release ... 17
 4.2.6. Ratio ... 18
 4.2.7. スレッショルド ... 19
 4.2.8. VUメーター .. 20
 4.2.9. パワースイッチ ... 21
 4.2.10. Mix .. 21

 4.3. アドバンストモードのコントロールパネル .. 22

 4.3.1. アドバンスト・サイドチェインコントロール ... 22
 4.3.2. Side-Chain Equalizer .. 25
 4.3.3. Compression Range ... 26
 4.3.4. Listen ... 26

5. ユーザーインターフェイス ... 27
 5.1. アッパートゥールバー .. 27

 5.1.1. Save ... 27
 5.1.2. Save As… ... 28
 5.1.3. Import ... 28
 5.1.4. Export Menu ... 28
 5.1.5. リサイズウィンドウ ... 28
 5.1.6. プリセットの選択 ... 29

 5.2. A/Bボタン .. 30
 5.3. アドバンストモード (二重矢印) ボタン ... 30
 5.4. サウンドデザイン・ティップス .. 31
 5.5. ロワーツールバー ... 32

 5.5.1. VU Calib. ... 32
 5.5.2. Bypass .. 32
 5.5.3. CPUメーター .. 32

 5.6. プリセットブラウザ .. 33
 5.7. 最後にいくつかポイントを .. 34

6. ソフトウェア・ライセンス契約 ... 35
1. ようこそ

1.1. コンプレッサーとは？

コンプレッサーはオーディオ処理デバイスの1つで、オーディオ信号のダイナミックレンジを圧縮する目的でレコーディングやミキシング、放送局のエンジニアが長年使用しています。このデバイスはオーディオ信号の最大レベルと最小レベルの差を平滑化（“圧縮”)し、過大なピークを抑えるために使用します。オーディオ信号のレベルが最大のところを抑えることで、レコーディング時に信号がオーバーロードする心配がなく、信号全体のレベルを上げることができます。その結果、平均的なレベルを高く維持したまま録音することができます。

コンプレッサーを使う理由は色々あります。例えば、コンプレッサーには録音するオーディオ信号（そしと私たちの耳を、歪んでもう可能性やスピーカー（と聴力）を破壊してしまう可能性のある過大なピークから保護する役割があります。また、レベルが高過ぎる部分を抑えることで、より聞きやすい音にすることもできます。音量が過大な部分で耳が痛くなる恐怖心が取り除かれ、静かな部分でも安心して音楽を聴けるからです。ドラムや人の声などのように、瞬間的に過大な音量を出せるパートが入っている音楽の場合は特にそのことが言えます。他にもコンプレッサーは音の変化を加工するといったクリエイティブな使い方もできます。こうしたフレキシブルな点があるため、コンプレッサーはレコーディングエンジニアが最も信頼するデバイスの1つとなっています。

コンプレッサーの使用理由は色々があります。例えば、コンプレッサーには録音するオーディオ信号（そして私たちの耳を、歪んでもう可能性やスピーカー（と聴力）を破壊してしまう可能性のある過大なピークから保護する役割があります。また、レベルが高過ぎる部分を抑えることで、より聞きやすい音にすることもできます。音量が過大な部分で耳が痛くなる恐怖心が取り除かれ、静かな部分でも安心して音楽を聴けるからです。ドラムや人の声などのように、瞬間的に過大な音量を出せるパートが入っている音楽の場合は特にそのことが言えます。他にもコンプレッサーは音の変化を加工するといったクリエイティブな使い方もできます。こうしたフレキシブルな点があるため、コンプレッサーはレコーディングエンジニアが最も信頼するデバイスの1つとなっています。

1.2. コンプレッサーにはどんなタイプがあるの？

コンプレッサーは歴史的に主要なタイプが色々ありますが、中でもチューブ方式、FET方式、VCA方式が主なもので、コンプレッション効果を作り出す電子パーツの違いなどにより、音の特性がそれぞれ違います。Arturiaでは上述の3タイプからそれぞれのトップモデルをエミュレートし、それぞれの特徴を自在に使えるようにしました。

Comp FET-76のメインのコントロール部

Comp FET-76は历史上最も有名なFET方式コンプレッサーをモデリングしたものでです。FETは"Field Effect Transistor"（電界効果トランジスタ）の略で、その動作理論につきましては本マニュアルでは説明することができますが、使い手目線でこの方式を一言で言えば、本当は早めアタックタイムが得られるのが大きな特徴です。また、入力信号に多種のエンジニアが好む多くの“色付け”と歪みが得られます。そのためドラムやギター、ボーカルなどアタックが早いタイプの楽器の音の加工に適しています。
1.3. どんな場面でコンプレッサーがよく使われるの？

コンプレッサーはフレキシブルなスタジオツールとして普段次のように使われています…

- ソースの音量の暴れを抑えてミックス内での"座り"を良くします。
- 平均的なラウドネスレベルを上げて、静かなパートでも聴きやすくします。
- 最終ステレオミックスの"接着剤"として、全トラックの凝集感を上げます。
- パーカッシブな音のアタック部分を加工して存在感や迫力を上げ（または下げ）ます。
- パーカッシブなアコースティック楽器（ピアノやギターなど）のリリースタイムを引き伸ばし、サウンドが前に出たような感じにします。
- ドラムの個々のショットやギターの個々のコードストロークの音量のバラつきを抑えます。ギターで過剰に使うと、ロックの名盤で聴かれる"ウォールオブサウンド"になります。
- 音量の"天井"を作り、それ以上大きな音にならないようにします。
1.4. Arturia門外不出の技術：TAE®

TAE® (True Analog Emulation) は、ヴィンテージシンセサイザーなどに使われているアナログ回路をデジタルで再現するArturia独自の技術です。

TAE®ソフトウェアアルゴリズムではアナログハードウェアの正確なエミュレーションが可能です。Comp FET-76のサウンドクオリティが際立って高いのは、他のArturiaヴァーチャルシンセやプラグインと同様、この技術を使っているためです。
1.5. Comp FET-76に対するArturiaのアプローチ

Arturiaのゴールは、"1176"と呼ばれる世界で最も有名なFETコンプレッサーのサウンドを忠実に再現することでした。当然ながらこれもArturia製品ですから、ヴィンテージハードウェアをただ忠実に再現ただけでは終わりません。オリジナルハードウェアをリスペクトしつつ、エンベロープ部に改良を加えることで味わい深い新機能が追加でき、現代の音楽制作環境でさらに使いやすいものとなりました。

1176は最速20マイクロ秒の超高速アタック、最高45dBのメイクアップゲインで"真のピークリミッターライナー"という異名もありました。この特性も忠実に再現していますので、オリジナルのハードウェア同様の繊細なニュアンスを、このプラグインで聴き取っていただければと思います。

オリジナルハードウェアはコントロール類の少なさで有名でしたので、プラグインでも同様のシンプルさをキープしています。大きなノブでインプットとアウトプットレベルを、小さなノブでアタックとリリースを、縦に並んだボタンで圧縮比（全ボタンを同時に押し込んでハイパーコンプレッション状態を再現する"ALL"もあります）をそれぞれ設定します。オリジナルハードウェアと同様、Comp FET-76にも各種表示モードを選びれる大型VUメーターがあり、信号の変化状況が簡単につかめます。

最後にオリジナルハードウェアでは見られない大きなMixノブがあります。これはArturiaが追加したもので、コンプレッションがかかった信号とかかっていない信号をミックスでき、より多彩な音作りができるようにしました。

オリジナル同様の機能やMixノブのようなちょっとした改良とは別に、大幅な機能拡張もしています。それらは"アドバンスト"パネルとしてメインパネルの下に表示されます。このパネルには、サイドチェインやハイパス/ローパスフィルター付き1バンドEQ、タイムワープ機能、コンプレッションレンジ・ノブ、サイドチェイン信号をモニターするボタンがあります。アドバンストパネルにつきましては後のチャプターでご紹介します。

では、設定などの作業に入って行きましょう！
2. アクティベーションと最初の設定

Arturia Comp FET-76プラグインはWindows 7以降またはmacOS 10.10以降のコンピュータで動作します。Comp FET-76はAudio Unit、AAX、VST2またはVST3形式のプラグインとして動作します（64ビットのみ）。

2.1. Arturia Comp FET-76ライセンスのアクティベート

ソフトウェアをインストールしたら、次のステップはライセンスのアクティベーションです。これを経て自由にご使用いただけます。

この作業は他のArturia製ソフトウェアでも使用するArturia Software Centerで簡単に行なえます。

2.1.1. Arturia Software Center (ASC)

ASCをインストールされていない場合は、こちらから入手可能です：Arturiaアップデート＆マニュアル

Arturia Software Centerはリストのトップにあります。お使いのシステム（WindowsまたはmacOS）に合ったインストーラーをダウンロードしてください。

表示される指示に従ってインストールを行った後に次の操作を行います：

- Arturia Software Center (ASC) を起動します
- お持ちのArturiaアカウントでログインします
- ASCの画面を下にスクロールしてMy Productセクションを表示させます
- Activateボタンをクリックします

これで準備完了です！
3. COMP FET-76オーバービュー

3.1. プラグイン動作

Comp FET-76はVST2、VST3、AU、AAXの各プラグインフォーマットに対応し、Ableton Live、Logic、Cubase、Pro Toolsなど主要なデジタルオーディオ・ワークステーション (DAW) 上で使用できます。ハードウェアのコンプレッサーとは違い、必要なだけ複数のComp FET-76を同時に立ち上げることができます。また、Comp FET-76にはハードウェアにはない次のような大きなメリットがあります：

- DAWのオートメーション機能でComp FET-76の各パラメーターの自動制御が可能。
- Comp FET-76のセッティングはDAWのプロジェクトの一部としてセーブされ、次回そのプロジェクトを開いた時にはセーブ時と同一のセッティングで使用可能です。

3.2. Comp FET-76の使いどころ

Comp FET-76の最大の特徴はビッグかつポールドなサウンドです。もちろん色付けの少ないクリアなトークンのコンプレッサーとしても使えますが、それはどちらかと言えばメインの用途ではありません。歴史的にこれのオリジナルハードウェアではアグレッシブな使い方で原音よりも派手な音にしていることが通例で、この機種が最も輝く使い方がそれだとArturiaでも考えています。

FETコンプレッサーの最重要キャラクターの1つが、極めて高速なアタックタイムと同時にサウンドに好ましい"色付け"をすることです。オリジナルハードウェアと同様、Comp FET-76は入力音を入力アンプに通过ますが、その瞬間にビッグなサウンド（多くの場合良い意味で）になり、原音とは少し違ったキャラクターに"色付け"されます。その入力アンプから実際にコンプレッションをするFETに信号が送られます。最速20マイクロ秒 (0.02ms) という怒涛の高速アタックタイムとパワフルなクラスAアンプ（最大45dBのメイクアップゲインが可能）により、かなり極端な方法でも自在にサウンドを加工できます。

ハードに信号を押し込むと歪みが増していき、さらにエキサイティングなサウンドになり、ギターやベースのキャラクター作りにも使えます。この場合、圧縮比を高く設定することでよく聴かれる押しつぶされたようなサウンドになり、特にドラムのオーバーヘッドやルームマイクにかかると効果的です。また、ボーカルにハードなコンプレッションをかけるとよりブライトなトーンになり、音が前に出たような感じの、存在感のあるサウンドになります。これはロックのレコーディングで長年よく使われている技法です。
3.3. アドバンストモード

Comp FET-76にはいくつかの追加機能があり、それはアドバンストモードボタン（アッバーツールバーの二重矢印）をクリックすると表示されます。この時、メインパネルの直下にセカンドパネルが開き、そこにはサイドチェインやタイムワープ、1バンドEQ（ハイパス/ローパスフィルター付き）、コンプレッショングレンジ、リッスンボタンが表示されます。セカンドパネルにある機能はオリジナルハードウェアにはなかった機能ですが、現代の音楽制作環境では非常に便利な機能です。

1つだけ注意してください。アドバンストモードのパラメーターをデフォルト設定値から変更した状態でセカンドパネルを開じると、アッバーツールバーの二重矢印にドットが付き、変更したパラメーターが有効な状態のままとなります。

各パネルの各パラメーターに関する詳細につきましては、コントロールパネル[p.13]のチャプターでご紹介します。
Comp FET-76のシグナルフロー

オーディオ信号がプラグインに入れると、その瞬間に次の2つのシグナルパスに分岐します:

1. "メイン"のシグナルパス。このパスの信号が実際に圧縮されたり加工されたりします。
2. "バイパス"のシグナルパス。このパスの信号は一切加工されずにComp FET-76の最終アウトの直前にあるミキサーに行き、Mixノブでメインパスの信号とのミックスができます。

Comp FET-76をステレオトラックで使用する場合、メインのシグナルパスは最初にM/Sエンコーダーに入ります。M/Sは"ミッド/サイド"の略で、"ミッド"チャンネル（ステレオイメージの中心）と"サイド"チャンネル（ステレオの左右側）を個別に処理する手法です。この詳細は後述[p.24]します。Detection Modeノブはステレオ信号に対してのみ使用でき、モノの場合はバイパスになります。

次に信号が入るのはFET（エミュレーション）のゲインリダクション回路です。ここがComp FET-76の心臓部であり、コンプレッションが実際に起こる場所です。このセクションはゲインリダクション・コントロール回路で制御されます。

ステレオ信号で使用する場合、次のステージはM/Sデコーディングブロックです。

ゲインリダクション回路を通過した後、信号はさらに2つのパスに分岐します:

1. メインパスはM/Sデコーディングブロックに行きます。ここで通常のステレオ信号に復元されます。
2. セカンドパス（別名"フィードバックパス"）はゲインリダクション回路に入るとソースセレクタースイッチに送り戻されます。ソースセレクタでは外部からのサイドチェーン信号も受けられます。

ゲインリダクション・コントロールモジュールは、検出信号（内部フィードバックまたは外部からのサイドチェーン信号のいずれか）とアドバンスト・サイドチェインパラメーターからの信号により、メインのシグナルパスに対してどのようにゲインリダクション回路を動作させるかを決定します。
M/Sデコーディングブロックの通過後、メインシグナル（ゲインリダクションされたオーディオ信号）はアウトプットゲインブロックに入ります。ここでメイクアップゲインの設定に従ってゲインリダクション・ステージで下がった全体音量を補正します。

最後に、メインシグナルはミックスステージに入り、ここで最初に分岐されたバイパスパス（原音）とのミックス量を設定して、プラグインから出力されます。

以上がComp FET-76全体のシグナルパスです。多少複雑に見えるかも知れませんが、少し時間を費やせばコンプレッサーの動作について理解を深めることができるとのことです。
3.5. Comp FET-76ハンズオン

3.5.1. コンプレッションの基本

Comp FET-76の動作を理解するために、以下の操作をしてみましょう:

- ドラムかボーカルのステレオクリップ (オーディオ) をDAWにロードします。
- ロードしたトラックのインサートにComp FET-76を立ち上げて、Comp FET-76の画面を開きます。
- デフォルトプリセットがロードされていることを確認します。デフォルトプリセットはニュートラルなサウンドになるように設定されています。
- DAWを再生します。ロードしたクリップが録音した通りに鳴っているはずです。ロウーターバーにあるBypassボタンをクリックすると原音に切り替わり、Comp FET-76を通った音と比較ができます (この時点ではどちらも同じ音です)。
- Inputを時計回りに回していきます。この時、Outputノブが自動的にInputノブを回しただけ反時計回りに動くのがわかります。これは、デフォルト設定ではInputとOutputがリンクしているためです (両者の間にリンクスイッチがあります)。InputとOutputを個別に操作したい場合はリンクをオフにできますが、現時点ではオンのままにしておきます。
- VUメーターの針が左へ振れるまでInputノブを上げます。メーターが反応するというのは、ロードしたクリップのピーク部分でコンプレッションがかかっているということになります。ゲインリダクションの量は、System Bypassスイッチをオン/オフすることでチェックできます。オフの場合、コンプレッション回路がバイパスとなり、原音そのままの音が聴こえます。
- ここで圧縮比を別の設定に切り替え、音が変化を聴いてみましょう。デフォルト設定は4、つまり4:1の圧縮比です。これを12にするとさらに劇的な12:1の圧縮比になります。今度は"All"ボタンを押してみましょう。これは"オールボタン"というオリジナルハードウェアで有名な使い方で、強烈なコンプレッションがかかります (この時、全体音量がかなり大きくなる場合がありますので、必要に応じてInputノブを下げてください)。他にもRatioボタンを押し替えて、クリップに合った圧縮比を見つけてみてください。

Comp FET-76をドラムトラックで使用している状態

- 今度はクリップのアタックやディケイの変化する感じを聴きながらAttackとReleaseノブを調節します。ノブを色々に回している間に、音量変化がソフトになったりハードになったり、あるいはもっと遅った感じに変化する瞬間があるかも知れません。とてもナチュラルで聴きやすい感じになるセッティングもあれば、不自然なサウンドになるセッティングもあります。ここで少し時間を取って色々調節しておくと、変化の感じが感覚的にわかり、最適なセッティングをすぐに出せるようになります。

・ Comp FET-76にはスレッショルドを直接コントロールするものがあります。スレッショルドレベルは可変で、Ratioボタンの設定によって変わります (圧縮比が高くなるとスレッショルドも高くなります)。4:1の場合、スレッショルドは-18dB付近、20:1の場合は-12dB付近になります。
3.5.2. アドバンストモードを使ってみる

ここまでの時点でComp FET-76の基本動作について感じがつかめたかと思います。次は少しディープな使い方を試してみましょう。

- 二重矢印をクリックしてアドバンストモードを開きます。
- Advanced Side-Chain Controlのノブを使ってみましょう。

![Detection Modeノブはステレオトラック使用時でのみ表示されます。モノトラックの場合、このノブは非表示になります。](image)

- サイドチェインEQの調節が済みましたら、ListenボタンをオフにしてEQをオフにして音の変化を聞いてみましょう。ディテクション（検出）信号にEQをかけるだけでも、コンプレッション動作に大きく影響していることに気付くかと思います。
4. COMP FET-76コントロールパネル

Comp FET-76はモノまたはステレオチャンネルで使用できます。

モノトラックでComp FET-76を立ち上げると、自動的にモノ動作になります。ステレオトラックで立ち上げるとステレオ動作モードが自動的にロードされます。

4.1. 動作モード (モノ/ステレオ)

Comp FET-76はモノとステレオで動作モードが異なります。その違いはAdvanced Side-Chain Controlセクションです。これはアドバンストモードのステレオ動作モードでのみ使用できます。Comp FET-76をモノチャンネルで立ち上げた場合、このセクションにはSourceとTime Warpのコントロールしか表示されず、Detection Modeノブは表示されません。

Advanced Side-Chain Controlセクションでは、コンプレッションをかけるための検出信号をどう取り扱うかを設定します。モノモードの場合、ソースの内部/外部切り替えのみで単純ですが、ステレオモードでは検出ソースの選択肢が増え（ステレオ、デュアルモノ、M/S）、その選択によってコンプレッションのかかり方が変化します。

モノモード時のComp FET-76。Detection Modeノブがありません。

サイドチェインの詳細につきましては、アドバンスト・サイドチェイン・コントロール [p.22]のセクションでご紹介します。
4.2. メイン・コントロールパネル

Comp FET-76のGUIは、すべてのコントロール類をハードウェアのようなグラフィックで表示しています。オリジナルハードウェアにはなく、Arturiaが追加した機能もハードウェアに見立てたグラフィックで表示しています。プラグインをデフォルト設定で立ち上げると、メインのコントロールパネルが表示されます。

その他に、オリジナルハードウェアが発表された当時には想像もつかない機能をArturiaが追加したのもあり、それらはセカンドパネルであるアドバンストモード・コントロールパネルに表示されます。セカンドパネルは、アップーツールバーにある二重矢印(Advanced Modeボタン)をクリックすると開きます。

Arturiaのプラグインバンドルシリーズではアッパーツールバーとロワーツールバーがあります。ロワーツールバーは非常に重要なセクションで、ここには各パラメーター名やその時の値が表示されたり、VUメーターのキャリブレーションや、プラグインのバイパス(メインのコントロールパネルにもバイパススイッチがありますが動作が異なります)ができたり、CPU消費量メーターがあります。

もちろん、アッパーツールバーもメインメニューに入ったり、プリセットやプリセットバンクのロードやセーブなどの重要なタスクを実行したり、プリセットの選択やプリセット名の表示があり非常に重要です。

アッパー/ロワーツールバーの各種機能につきましては、ユーザーアンターフェイス[p.27]のチャプターをご参照ください。

このセクションでは、各パラメーターの動作やそのレンジなどについて1つずつご紹介します。

Comp FET-76メインコントロールパネル

各コントロール(ノブやポタン)をクリックすると、ロワーツールバーにそのパラメーター名とその時の設定値が表示されます。設定値はコントロールを操作するとリアルタイムで変化します。表示される設定値は必ずしも同じタイプのものとは限らず、パラメーターによって変わります。

アッパーツールバーの電球アイコンが点灯している場合、使いこなしのヒントが表示されることがあります。その場合、ロワーツールバーにもパラメーターの簡単な説明が設定値の隣に表示され、VUメーターの一部領域がハイライト表示になって、そのプリセットでの最適なゲインリダクション量をお知らせします。

では、メインコントロールパネルの各コントロールから見ていきましょう:

4.2.1. Input

Inputノブは、コンプレッションのかかり具合に大きく影響する極めて重要なノブです。このノブではオーディオ信号の入力レベルを調節します。

可変レンジは-48dBから0dBまでです。デフォルト設定では、ノブは-48dBにセットされています。つまり、何もゲインを上げてない状態で、コンプレッション効果はほぼかかっていない(ディテクション信号によっては多少変化します)状態です。

Comp FET-76にはスレッショルドがありません。スレッショルドは圧縮比(Ratioボタン)の選択で変化します。そのため、圧縮比を設定しても実際のコンプレッションは入力するソースの音量によって変わります。つまり、入力レベルの設定次第でコンプレッサーの動作も変わってくるということになります。
Comp FET-76は入力ソースに対して多少の色付けをしますので、コンプレッションがかかっていなくても音色が少し変化します。

4.2.2. Link

LinkスイッチはOutputノブの動作をInputノブにリンクさせるオン/オフスイッチです。デフォルト設定値はオンです。このスイッチは鍵のアイコンで表示されます。

リンクがオンの場合、Inputノブの動きに応じてOutputノブが反対に動きます。コンプレッション動作は入力ソースに対して可変ですので、入力ソースに過剰なドライバーをかけたい場合もあります。その場合はInputを極端に上げても、全体音量がオーバーロードするリスクもなく安心して狂ったように歪んだ（そしてコンプレッションもかかった）音にできます。

Outputノブはいつもも独立して操作できます。リンク機能は実は一方通行で、常にInputからOutputにしか適用されません。そのため、Inputの調節で最適なコンプレッションになりましたら、Outputノブで適切な音量に調節できます。この時、Inputの設定には影響しません。

リンクをオフにすると、InputもOutputも個別に操作できます。

4.2.3. Output

Outputノブは現代のコンプレッサーではメイクアップゲインとも呼ばられています。コンプレッサーは入力信号の音量が大きいところを下げますので、全体としては音量が下がります。これがコンプレッサーの仕事とも言えます。音量が極端に大きい部分を下げれば、全体音量を上げることができ、これにより音量が小さい部分もよく聴こえるようになります。それをOutputノブで行います。

可変レンジは-48dBから0dBまでです。デフォルト設定値は0dBで、Inputノブのデフォルト設定値(-48dB)と対になっています。

オリジナルハードウェアはコンプレッションがかかっていなくても一聴すればそれがわかる音色になります。事実、内蔵アンプ回路や音の色付けの良さから、ゲインアンプとして活用されることもあります。そうした動作もコンプレッションレンジ[p.26]コントロールでシミュレートできます。
4.2.4. Attack

アタックタイムはコンプレッサーの動作で非常に重要な要素です。このパラメーターで、入力ソースがスレショルドレベルを超えた時に、実際にコンプレッションがかかるまでの時間を設定します。このパラメーターの設定次第で、音のキャラクターは大きく変わります。アタックタイムが非常に速いと、押し潰されたようなサウンドになります。逆にアタックタイムが長すぎる場合、入力ソースの音量ピークを完全に通り過ぎてしまい、曲の先頭でコンプレッションをかけたかったのに、最後まで一度もコンプレッションがかからなかったという最悪のシナリオになってしまう。

そのため、入力ソースに応じてアタックタイムを適切に設定する必要があります。ボーカルの場合はアタック部分を多少残しておきたいことが一般的ですので、アタックタイムは比較的早めですが早すぎない設定がお勧めです。

経験則上、次のことが言えます：アタックが速く、レンジが高い場合、ピックでギターを弾いたように音量変化の不自然さを軽減できます。また、遅いアタックでレンジが低い場合は、原音のキャラクターを変えず自然な音量変化になります。

Comp FET-76をリミッターとして使用する場合は、Ratioを20に、Attackを速めに（最速にする必要はありません）するのがお勧めです。リミッターとして使用する場合、ロックアヘッド[p.24]機能が使えるというメリットがあります。この機能は、アドバンストモードのTime Warpノブを使用します。

Comp FET-76はオリジナルハードウェアと同様、超高速のアタックタイムを設定できます。Attackノブを操作する際は次のことにご注意ください。入力ソースに応じてアタックタイムを設定する時に、ノブの周囲の数値に注目してください。1が最もスロー（長い）アタックタイム、7が最速（短い）アタックタイムになります。

デフォルト設定は5です。
リリースはアタックと不可分のパートナー的パラメーターと言えるでしょう。スレッショルドを超えてからコンプレッションがかかるまでの時間がアタックタイム、信号レベルがスレッショルドを下回った瞬間からコンプレッションが解除されるまでの時間がリリースタイムです。

このように、この2つのパラメーターは互いにリンクしている見ることもできます。アタックとリリースは、オーディオ信号がスレッショルドを超えることでトリガーされるエンベロープのセグメントと見なすこともでき、その場合サステインレベルは圧縮比（コンプレッションレシオ）となります。とは言え、これはコンプレッサーですから、サステインレベルは原音の音量よりも低いため、エンベロープとしては反転タイプになります。

リリースは時間を設定するパラメーターですから、アタックと同様速くしたり遅くしたりできます。リリースの効果もアタックと同様、ソースのタイプによって変化します。通常、リリースタイムはアタックタイムよりも遅め（長め）に設定します。これはソースのダイナミクスが急激に変化した場合に、コンプレッションの様子が不自然なものにならないようにするためにです。

ここで重要なポイントなのでですが、Comp FET-76はソースの音量変化によってリリースタイムが変化するという特長があります。ソースの音量変化が素早い場合、音量低下を避けるため急速にコンプレッションを解除しますが、ヘヴィなコンプレッションが続く場合は、Comp FET-76のリリースは長めに動作してパンピング（相対的な音量上昇）を抑えます。

アタックに言えることがそのままリリースにも言えるということです。エンベロープと見なすことが重要です。ソースの音量変化に注目して、それをどう変えたいかを見極め、それに従ってエンベロープのカーブを設定するということです。

Comp FET-76のリリースタイムもオリジナルハードウェアと同様、超高速に設定できます。アタックタイムと同じくノブの周囲に数値がありますが、1が最もスローで7が最速です。

デフォルト設定値は4です。
4.2.6. Ratio

Inputと並び、AttackとReleaseもですが、Ratioはベストなコンプレッションを作るための重要なパラメーターです。

Ratio（レシオ）は、入力ソースの音量的パワーとコンプレッション後の出力オーディオのパワーとの関係を指します。そのためレシオのことをコンプレッションレシオ（圧縮比）と呼ぶこともあります。そしてレシオは恐らく、コンプレッションの最重要パラメーターとも言えます。コンプレッションの値はレシオの数値で表現します。ですので、値が4だとした、それは4:1の圧縮比だということです。これを別の言い方に置き換えるとすれば、入力ソースがスレッショルドから4dB超過した場合、その超過分を1dBに抑えということがになります。とはいえこれはアナログ機器のエミュレーションですが、入力ソースに対してエミュレーションされた回路が動作しますので、この値は目安としての値に過ぎません。それはオーディオレベルによって変動するからです。入力ソースがスレッショルドを超えるような場合、それに応じて圧縮比が徐々に変化していきます。

この点が、Comp FET-76を“プログラム依存”と呼んでいる所以です。つまり、コンプレッションカーブがオーディオ入力とダイレクトに関係していて、大入力に対してはより深くコンプレッションをかけるのです。このことはコントロール性は多少落ちますが、非常に“音楽的”なサウンドになりますが、 linebackがオーディオ入力とダイレクトに関係していて、大入力に対してはより深くコンプレッションをかけるのです。このことはコントロール性は多少落ちますが、非常に“音楽的”なサウンドになりますが、 şikurbがオーディオ入力とダイレクトに関係していて、大入力に対してはより深くコンプレッションをかけるのです。このことはコントロール性は多少落ちますが、非常に“音楽的”なサウンドになりますが、それにコンプレッサーの機種によっても変わります。コンプレッションレシオに戻ります：レシオが4:1の場合、入力ソースが+12dBであればコンプレッション後はそれを+3dBに抑えます。

一般的に、レシオは低め（4:1かそれ以下）が望ましいのですが、それは音楽や楽器のタイプで変わりますし、どんな結果が欲しいかによっても変わります。それにコンプレッサーの機種によっても変わります。例えばドラマなどで表現を高めるレシオにすることはよくありますし、その点、Comp FET-76はそうしたタイプの仕事に非常に向いているツールと言えます。

コンプレッションレシオは4（ソースのパワーを1/4に低減）から最大で20（高速アタックと併用してリミッターとして使用する場合に適しています）です。ポーカルや楽器で使用する場合は4や8で十分で、ドラマには12を使うことが一般的です。20はリミッター向け、Allは特殊ケース用です。デフォルト設定値は4で、コンプレッションレシオは4:1です。

スレッショルドはレシオの設定で決まります。レシオが高ければ、コンプレッションがかかり始めるスレッショルドレベルも高くなります。レシオは、コンプレッションのカーブにも影響します。レシオが高ければ、その分ハードな（リミッターに近い挙動の）コンプレッションになります。
Allボタンは特殊なケースで、すべてのレシオが同時に適用されます。オリジナルハードウェアにAllボタンはなく、複数の（あるいはすべての）レシオボタンを同時に押すことでその動作に入ります。この動作は偶然発見され、その音が良かったために広まったものです。All動作時のコンプレッションは非常にフラットなレスポンスで、同時にある程度のディストーションもかかります。ドラムにかけると、ダイナミックレンジが極端に圧縮されて高域成分が加わり、全体的に巨大な感じのサウンドになります。ギターやベースにかけると重みが生じてグランジでダーティな感じになります。ぜひお試しください。

"ノーボタン"という特殊な使い方もあり、この場合コンプレッションはかからず、音色変化やサチュレーションを加えるためのプリアンプとして使用できます。この動作はアドバンストモードのコンプレッションレジ [p.26]の設定で再現できます。このレンジを0dBにするときコンプレッションがかからなくなり、ゲインリダクション回路がただオンになっているだけの状態になります。

4.2.7. スレッショルド

スレッショルドはコンプレッサーの最重要コントロールの1つです。他の重要なコントロールと同様、その動作はコンプレッションがかかり始めるレベルですから一見シンプルです。

FET-76にもスレッショルドがありますが、そのノブはありません。FET-76は入力ソースの音量に応じてコンプレッションのかかり方が変化するプログラム依存タイプですので、スレッショルドはレシオの設定によって変わります。レシオが高ければスレッショルドも高くなります。その変化は約6dBステップになっています。コンプレッションカーブもレシオの設定で変化します。まとめると、次のようにになります：

- 低レシオ - ソフトなコンプレッションカーブ - 低めのスレッショルド
- 高レシオ - ハードなコンプレッションカーブ - 高めのスレッショルド

インプットレベルを上げると、その分だけアウトプットレベルが下がります。これはリンクがオンになっているためです。
4.2.8. VUメーター

VUメーターは動作の視覚的チェックにとても重要です。耳の代わりになることはありませんが、色々な場面で便利です。

このコンプレッサーコレクションでは、メーターでインプットレベル、アウトプットレベル、ゲインリダクションレベルが見られるようにしています。デフォルト設定ではゲインリダクションを表示します。これとは別に、VUメーターの感度調整もローウエーブルバーでできます。オプションは-18dB, -14dB, -8dBの3種類です。デフォルト設定は-18dBです。これはピークレベルが-18dBFSの時に0VUを表示するという意味です。

メーターがゲインリダクションを表示するモード（デフォルト設定）の場合、0dBの位置が待機ボジショ
ン（コンプレッションがかかっていない状態）になります。これはオリジナルハードウェアの動作と同じです。

VUメーターは1つのチャンネルしか表示できませんので、デフォルト設定では左チャンネルを選択していま
す（メーターの左下隅にLの文字が表示されます）。ディテクションモードをM/Sモードのいずれかにセッ
トすると、メーターの計測チャンネルが自動的にミッドになります（この場合、メーターの左下隅にMの文字が表示されます）。

その文字をクリックすると、計測チャンネルを右チャンネル（ディテクションモードがL/Rモードの場合）に、またはサイドチャンネル（ディテクションモードがM/Sモードの場合）に変更できます。
Arturiaが追加したVUメーターの便利な機能として、クリップインジケーターもあります。メーターの右下隅に赤く点灯する"LED"があります。オーディオ信号がクリップに達すると"LED"が赤く点灯します。

4.2.9. パワースイッチ

このスイッチがオフの場合、オーディオ信号はコンプレッション回路をバイパスしますが、そのレベルはVUメーターでモニターできます。原音とコンプレッションがかかった音を音だけでなく視覚的にも比較する場合に便利です。

このスイッチの動作は、ロワーツールバーのBypassボタンとは動作が異なります。ロワーツールバーのBypassボタンはプラグインを完全にバイパスにする場合に使用します（この時、GUIの表示が少し暗くなります）。パワースイッチはコンプレッション回路をオフ（バイパス）にするだけで、プラグイン自体はオンのままでです。デフォルト設定はオンです。

4.2.10. Mix

スタジオテクニックの1つにパラレルコンプレッションというのもがあります。これは原音の音量変化のキャラクターを残しつつ、コンプレッション音も使いたい場合に便利なテクニックです。基本コンセプトは、入力ソース（原音）とコンプレッションがかかった音をミックスすることです。そのためには、コンプレッション音が出力されるルートとは別に、入力ソースを"そのままスルーさせる"ルートが必要になります。

それがMixパラメーターです。このパラメーターは、Arturiaがこのコンプレッサーバンドル追加したもので、

Mixノブはデフォルト設定ではCompを指しています。これはコンプレッション音のみを出力するという意味です。ノブをDry（原音）に回したり、その中にセットすることもできます。設定値はパーセント表示で表示され、100%はコンプレッション音のみ、0%は原音のみです。
4.3. アドバンストモードのコントロールパネル

アドバンストモードのコントロールパネルは、アップバーツールバーのアドバンストモードボタン（二重矢印）をクリックすると表示されます。このパネルのレイアウトは3タイプのコンプレッサーブラグインで共通で、機能もほぼ同じです。このパネルには各コンプレッサーをさらにパワフルかつフレキシブルに使える非常に重要な機能が入っています。

![Comp FET-76のアドバンストモードのコントロールパネル](image)

4.3.1. アドバンスト・サイドチェインコントロール

サイドチェインはコンプレッションをコントロールするための信号です。入力ソースをそのまま使うこともあれば、外部信号（別のトラックのオーディオ）を使うこともあります。

サイドチェインと言えば外部信号を使うのが普通でしょう。この場合、別の楽器の音量変化でコンプレッションをコントロールできます（例えばキックとベースのミックスバランスをコントロールする等）。あるいは、“パンピング”という特殊効果にも使えます。

サイドチェインを行うには、コンプレッションをコントロールするためのソース（通常は別のトラックのオーディオ）をディテクションパスに送る必要があります。

オリジナルハードウェアでは、入力ソースのみがサイドチェインのディテクション信号として使用できましたが、Comp FET-76では外部ソースも使用できます。その設定はアドバンストモードのコントロールパネルにAdvanced Side-Chain Controlセクションで行います。

4.3.1.1. Source

ここがコンプレッション回路をトリガーするソースを選ぶパートです。デフォルト設定ではInternalが選択されます。通常の用途では入力ソース（コンプレッションされる信号）が検出回路にも入って、スレッショルドを超えた時点でコンプレッションがかかりますので、このデフォルトはInternalです。

もう1つのオプションがExternalです。この場合は、コンプレッションされる入力ソースとは別の信号を検出回路に入れます。外部信号を使ったサイドチェインの場合は、ここをExternalにセットします。この場合、外部信号が検出回路に入ります。

ソースセレクターはトグルスイッチですので、クリックするたびに設定が切り替わります。Internalにセットしてある状態でここをクリックすれば、Externalに切り替えられます。もう一度クリックするとInternalに戻ります。

Internalの場合はInputノブでスレッショルドをコントロールできますが、Externalの場合はインプットレベルに代わるものが必要です。もちろんそれも用意してあります。

Sourceスイッチの下にSC Gainノブがあります。デフォルト設定ではこのノブは0dBを指しており外部信号のレベルを変化させません。このノブは-24dBから+24dBまでの範囲で変化します。
4.3.1.2. Detection Mode

ディテクションモードの選択ノブは、ステレオトラック/バスで使用する場合にのみ表示されます。モノトラックで使用している場合、このノブは表示されません（このノブはステレオ専用で動作するためです）。

アドバンストサイドチェイン・セクションが“アドバンスト”なのは、このノブがあるからです。シンナルフロー[p.9]をご紹介した後に、オーディオ信号をミッド/サイドモードにエンコーディングすると説明しました。スタンダードパネルのコントロール類にM/S信号に対応したもののが一切ないことを考えると、これはちょっと驚くべきかもしれません。

実はこのノブにM/Sエンコーディングができる理由が隠されていて、その点がComp FET-76を使うメリットとも言えます。ミッド/サイドモード[p.24]は特殊なオーディオエンコーディングモードで、ミッドチャンネルはステレオイメージのセンターに、サイドチャンネルはステレオの両端になります。

アドバンストディテクションモードには、ステレオ (L/R) モードとミッド/サイドモードが2種類の合計3種類のオプションがあります。そしてここからは“アドバンスト”なところです。ステレオ (L/R) にはLinked, Dual, Reversedのオプションがあります。ミッド/サイドモードにはSide Only, Mid Onlyのオプションがあります。

Comp FET-76のAdvanced Side-Chain Controlセクション（ステレオトラック使用時に表示）

デフォルト設定はLinked (L/Rモード) です。この設定では、ステレオの左右両チャンネルの最大レベルをコンプレッション検出に使用し、左右両チャンネルに同一のコンプレッションをかけます。ステレオ信号にコンプレッションをかける場合の一般的な設定です。

次にあるのはDualです。このオプションでは、ステレオ信号を2つのモノチャンネルとして扱います。コンプレッション検出は左右個別に行い、コンプレッションも左右個別に動作します。左右チャンネルの音量差が少ない場合はバランスの良いコンプレッションになりますが、左右で音量差が大きい場合は聴感上のチャンネルセパレーションに影響することがあります。

Reversedもステレオ信号を2つのモノチャンネルとして扱い、検出とコンプレッションを行います。しかしながら、このオプションではコンプレッションに反対側チャンネルの検出信号を利用します。つまり、左チャンネルの検出信号を右チャンネルのコンプレッションに使う、逆も同様です。Dualオプションと同様、このオプションでも左右チャンネルの音量差が少ない場合は良いのですが、音量差が大きい場合は左右間で掛け合いをしているようなパンニング効果を生み出す場合があります。

ミッド/サイドモードにはオプションが2つあります。Mid Onlyでは検出にミッドチャンネルを使い、ミッドチャンネルにコンプレッションをかけます。この場合、サイドチャンネルの存在感が相対的に増し、左右間の広がり感をより引き出したいような、ドラマのオーバーヘッドトラックのルームアンビエンスなどの場合に便利です（この場合、サイドチャンネルにはコンプレッションがかかっていません）。

もう1つのオプションがSide Onlyです。このオプションではサイドチャンネルで検出してサイドチャンネルにコンプレッションをかけます。ちょうどMid Onlyと逆の効果となり、センター成分の存在感が相対的に増えます（モノ互換が良くなります）。
4.3.1.3. Mid/Side Mode

ミッド/サイドモードはミックスやマスターでのステレオの広がり感を調節するのに非常に効果的です。このモードは左右チャンネルの位相の干渉を解析し、ステレオ全体ではなく、ステレオイメージの中心部分または両端部分のいずれかのみにコンプレッションをかけるモードです。

ミッド/サイドでは、ミッドチャンネルはステレオイメージのセンター部分、サイドチャンネルは両端部分を指します。

ミッドチャンネルのコンプレッションを調節すると、ステレオイメージが聴感上センター寄りに凝集することができます（モノラルとの互換性が向上すると考えられます）。例えば、ミッドチャンネルをブーストすると、サウンド全体はよりモノ（左右チャンネルの音が同一の状態）に近づいていきます。

対してサイドチャンネルを調節すると、ステレオイメージの広がり感が変化し、ブーストした場合は聴感上のステレオの左右間がさらに広がります。

4.3.1.4. Time Warp

タイムワープは、ネガティブ設定（Snap側）にすることで一般的に言われるコンプレッション検出の“ルックアヘッド”を設定できます。

ポジティブ設定（Loose側）にすることでまったく逆の動作、つまりコンプレッション検出を遅らせることもできます。ソースの速いアタック部分での検出を回避させて、その部分にコンプレッションをかけないようにできます。

デフォルト設定では、0（検出に何も影響させない状態）に設定されています。Snapタイム（ルックアヘッド）は最大5ms (-5.00)、Looseタイムは最大10ms (10.00)です。
4.3.2. Side-Chain Equalizer

現代のコンプレッサーは、ソースが検出パスに入る前段でソースの特定帯域を調節（例えば高域のブースト/カットなど）する機能を備えたものが多くあります。これにより、特定帯域がコンプレッションに大きく影響を及ぼすことを低減できます。

そのためには、ソースを検出回路に送る前にEQを通す必要があります。インプット段でソースがメイン（コンプレッションがかかるパス）を検出信号に分離された直後、検出パスの最初にEQがあるのはそのためです。

コンプレッサーに内蔵のEQは通常、周波数とゲインが調節可能な1バンドに、ローパスフィルターとハイパスフィルターが加わった非常にシンプルなEQ（セミパラメトリック）です。目的に対して必要かつ十分な構成です。

![The Comp FET-76のEQ](image)

ハイパスフィルターは-12dB/Octの固定スロープで、周波数を20Hz〜1.2kHzの範囲で連続可変できます。デフォルト設定はオフ（ノブの向きが左いっぱいの状態=フィルターオフ）です。

ローパスフィルターも-12dB/Octの固定スロープで、周波数は3kHz〜20kHzの範囲で連続可変します。デフォルト設定はオフ（ノブの向きが右いっぱいの状態=フィルターオフ）です。

EQには2つのコントロールがあります：1つはFrequencyでもう1つはGainです。Frequencyの可動範囲は30Hz〜16kHzで、デフォルト設定は700Hz付近です。Gainは-12dB〜+12dBの範囲で調節でき、デフォルト設定は0です。バンド幅は可変式で、ゲインを上げるほど狭くなります。

EQセクション全体のオン/オフは、ノブ類の上にあるスイッチで切り替えられます。オンの場合は、スイッチの隣にある"LED"が赤く点灯します。デフォルト設定はオフです。

> EQの周波数を4kHz〜8kHzに設定すると、ディエッサーのように使うことができます。
4.3.3. Compression Range

コンプレッションレンジは、コンプレッションレシオと連動します。

ここではゲインリダクションの量に制限をつけ、ゲインリダクションリミッターとして機能します。値を大きくするほど、ゲインリダクションの量が小さくなります。0dBではコンプレッションレシオが1:1 (コンプレッションなし)になります。

デフォルト設定は-100dB (FULL=フルコンプレッション) です。そこから値を0dBまで上げられます。

0dB (コンプレッションなし) にセットするのは、オリジナルハードウェアでコンプレッションレシオを"ノーボタン"のセッティングにすることと同じになり、その場合Comp FET-76はコンプレッサーとしてはなく、ソースに色付けや歪みを加えるプリアンプとして使用できます。

![Compression RangeノブとListenボタン]

4.3.4. Listen

このボタンを押すとサイドチェイン信号がモニターできます。検出パスの信号にEQをかけた場合の音をチェックしたり、コンプレッションがかかった音と比較しながら、検出パスの信号にかけるEQのブースト/カット量を調節する際に便利です。
5. ユーザーインターフェイス

Comp FET-76のユーザーインターフェイスには、メインのコントロールパネル、アドバンストモードのコントロールパネル、そして画面の上下端にツールバーがあります。

ユーザーインターフェイスは非常にシンプルになっています。ここにも使いやすさはそのままに創造性を解放するという、Arturia製品の最重要コンセプトが生きています。

これまで2つのコントロールパネルについて見てきました。ここからは2つのツールバーを見ていきましょう。

5.1. アッパーツールバー

本プラグインのGUI（グラフィカルユーザーインターフェイス）にもArturia共通のツールバーが画面上端にあり、Arturiaロゴとその左にあるプラグイン名に続き、ライブラリーボタン、プリセット名、プリセットの選択に使用する左右の矢印ボタンがあります。

そして、ツールバーの右側には新機能のA/Bボタンがあります。

その隣にはアドバンストモードに入れるためのボタン（二重矢印）があります。二重矢印の横にドットが付いている場合は、アドバンストモードのパネルが閉じている場合でも、その機能を使用している（各パラメーターがデフォルト設定以外のセッティングになっている）状態を表示します。

アドバンストモードの機能はコンプレッサープラグイン3機種で共通となっており、各オリジナルの機能を強力にアップグレードできる重要な機能が入っています。

その隣にはPigments（ソフトウェアシンセサイザー）で導入しました非常に重要なボタンで、サウンドデザイン・ツップスボタンと言います。この電球アイコンをクリックすると、そのプリセットの作成者による各パラメーターの設定に関するガイドが表示されます。

アッパーツールバーの機能はArturiaの各プラグインで共通仕様となっており、それぞれ重要な機能に入る際に使用します。

それらの機能は画面左上コーナーのComp FET-76ボタンをクリックすると表示されます。Arturiaの現行プラグインで共通ですので、すでにArturiaプラグインをお持ちの方にはお馴染みのものかも知れません。以下、1つずつご紹介します：

5.1.1. Save

Saveは、プリセットをエディットし、同じプリセットに上書き保存する場合に使用します。元のプリセットを残しておきたい場合は、Save Asを使用します。
5.1.2. Save As…

Save Asを選択すると、保存先を指定する画面が表示されます。そこでこれから保存するプリセットの名前や作成者名を入力し、タイプを選択できます。オリジナルのタイプを作成したい場合は、タイプ名を入力します。これらの情報はプリセットブラウザが参照し、後でプリセットをサーチする場合に便利です。

5.1.3. Import...

このコマンドは、プリセットファイルをインポート(読み込み)する際に使用します。インポートはプリセット1つのみ、またはバンク全体が選べます。プリセットファイルには.f76xの拡張子が付きます。このコマンドを選択すると、デフォルト設定のファイルパスが表示されますが、これを変更してプリセットファイルが保存されているパス(フォルダ)を指定し直すことができます。

5.1.4. Export Menu

プリセットをエクスポート(書き出し)する場合、プリセット1個分またはバンク1個分の2種類が選べます。

- Export Preset：プリセット1個のみのファイルを他のユーザーとシェアしたい場合に便利です。保存(書き出し)先はデフォルト設定のファイルパスが表示されますが、必要に応じて任意のパスに再指定できます。書き出したプリセットはImportコマンドでロードすることもできます。
- Export Bank：バンク全体のプリセットを書き出す際に使用し、バックアップを取る場合やプリセットをバンクごとシェアしたい場合に便利です。

5.1.5. クラダイズウィンドウ

Comp FET-76の画面は画質に影響なくオリジナルサイズの60%〜200%の範囲でリサイズできます。ラップトップなどスクリーンが狭い場合はウィンドウサイズを縮小でき、スクリーンをプラグインで占拠せずに済みます。大きなモニターやセカンドモニターをご使用の場合は、より見やすいサイズに拡大できます。拡大/縮小に関わらず、各コントロールは同様に使用できますが、縮小し過ぎたり、HDモニターやそれ以上の高解像度モニターをご使用の場合は、細かな設定が難しく感じられる場合がありますのでご注意ください。モニターの解像度を上げると、拡大してもキレイに表示されます。
5.1.6. プリセットの選択

ツールバーのライブラリシンボル（|||）をクリックすると「プリセットブラウザ[p.33]」が表示されます。ツールバーにあるフィルターやネームフィールド、左右の矢印を使ってプリセットの選択ができます。

アッパーやツールバーのプリセット名フィールドをクリックするとプリセットの選択モードになり、選択可能なプリセットのリストが開きます。その時に選択しているプリセットにはvのマークが付いています。選択したいプリセット名にマウスオーバーするとハイライト表示になり、クリックすると選択を実行します。

他の方策として、プリセット名フィールドの右にある左右の矢印ボタン（プリセットフォワード/バックワード）でプリセットを前後に1つずつ切り替えることもできます。

![プリセットブラウザのスクリーンショット](image-url)
5.2. A/Bボタン

A/BボタンはArturiaプラグインの本バージョンから付いた新機能です。このボタンで、例えばエディットしたプリセットと、保存されている状態との比較のように、選択したプリセットの2種類の異なる状態（スナップショット）を比較することができます。ハイライト表示になっているスナップショットが、その時に選ばれているものになります。この機能は、プリセットをエディットした際に、そのエディットで元のプリセットよりも良くなっているかどうかをチェックしたい場合に非常に便利です。

すべてのプリセットでスナップショットAとBを持たせることができるが、A/Bボタンは元のプリセットからエディットした2種類のバリエーションでも、元のプリセットとエディットしたものでも構いません。スナップショットAの内容をBにコピーしたり、その逆も可能です。プリセットをロードした時点ではA/B両方のスナップショットは同じ内容です。そのため、スナップショットAをコピーした状態では元のプリセットとエディットしたものも表示されます。元のプリセットを保存した時点でA/B両方のスナップショットは同じ内容となります。そのため、スナップショットAをコピーし始めると、スナップショットBは変更を保存するまでは元のプリセットと同じ状態をキープします。このようにして、エディットしたバージョンと元のプリセットを呼び出して比較できます。A/Bボタンでもう1つ便利な機能として、2つのプリセットをロードできる機能があります。スナップショットAを選択した状態でプリセットをロードします（この時、A/Bは同じセッティングになります）。次にスナップショットAを選択状態で別のプリセットをロードすると、Aのセッティングは先にロードした内容のままで、Bののみ新しいプリセットがロードされます。これでA/Bボタンを使って2つの別のプリセットを比較できます。プリセットをセーブする際は、選択していたスナップショットの内容のみがセーブされます。従って、スナップショットBを選択状態でセーブを実行すると、Bに内容がプリセットとしてセーブされます。同様に、Aを選択した状態でセーブすると、Aの内容がプリセットとしてセーブされます。また、プラグインのセッティングをエディットしてDAWのプロジェクトとして保存した場合、次回そのプロジェクトをロードすると、A/B両方のセッティングは保存時のセッティングになります。

5.3. アドバンストモード (二重矢印) ボタン

このボタンでアドバンストモードのコントロールパネルが開きます。このパネルには、オリジナルハードウェアにはなかった機能が入っています。このパネルの種類はコンプレッサーブラグインの3タイプで共通です。

アドバンストモードのパネルが開いている場合、二重矢印ボタンは上向きになります。パネルが開けると下向きになります。

アドバンストモードのパネルのパラメーターを変更した状態でパネルを閉じると、二重矢印ボタンの隣にドットが表示されます。どのようなパラメーターが変更されているかは、二重矢印ボタンをクリックしてアドバンストモードのコントロールパネルを開いてチェックしてください。

アドバンストモードの種類の詳細につきましては、コントロールパネル [p.13] のページをご参照ください。
5.4. サウンドデザイン・ティップス

この機能はソフトウェアシンセサイザーのPigmentsで初採用され、プリセットの見方を一変させる革新的な機能だと自負しています。

サウンドデザイン・ティップスは、プリセットの作成者がそのプリセットのエディットで最も効果的なパラメーターをユーザーにお知らせする機能です。この機能がオンの場合、各パラメーターの簡単な説明がロワーツールバーの左側に表示されます。

ファクトリープリセットを選択し、アッパーツールバーのアドバンストモードボタンのすぐ右にある電球アイコンがサウンドデザイン・ティップスボタンです。オンの場合、選択してハイライト表示なったパラメーター以外は表示が暗くなります。

各ファクトリープリセットには、この機能で設定したパラメーターと、それに対応するメーターのレンジ情報が入っています。このパラメーターは、そのプリセットをエディットしてソースに最適化する際に、最初にエディットすべき、いわば"オススメ"のパラメーターです。メーターのレンジは、そのパラメーターをエディットした際に変化するゲインリダクションの幅になります。

電球アイコンの右にある小さな三角矢印をクリックすると、"(アドバンスト)エディットティップス"のオプションにアクセスできます。オプションを選択すると、そのプリセットのエディットで重要と思うパラメーターにマークを付けることができます。そのオプションを選択した場合に、マークを付けたパラメーターには小さな電球アイコンが表示され、サウンドデザイン・ティップスボタンのそばには小さな歯車アイコンが表示されます。
5.5. ロワーツールバー

 PARAMETER をエディットすると、その設定値や状態がロワーツールバーの左側に表示されます。また、 コントロールパネルのパラメーターにマウスオーバーすると、そのパラメーターの設定値が表示されますので、 そのパラメーターをエディットすることなく、設定値だけをチェックするのに便利です。

サウンドデザイン・ティップスボタンがオンの場合、選択したパラメーターの簡単な説明も表示されます。

ロワーツールバーの右側には小さなウィンドウやボタンがあります。これらも非常に重要な機能ですので 1つずつ見ていきましょう：

5.5.1. VU Calib.

Comp FET-76のコントロールパネルのセンターやや右寄りの位置に大きなVUメーターが1つありま す。ロワーツールバーの"VU Calib."の右にある数値をクリックすることで、メーターの反応を調整するメ ニューにアクセスできます。デフォルト設定では-18dBuに調整されていますが、これを-14dBuまたは -8dBuに変更できます。

5.5.2. Bypass

このバイパスをオンにすると、Comp FET-76プラグインが完全にオフ (バイパス) になります。

5.5.3. CPUメーター

CPUメーターは本プラグインによるコンピュータのCPU消費量を表示します。この表示が非常に大きい場 合、システムやオーディオ全般的処理が重くなることがあります。
5.6. プリセットブラウザ

プリセットブラウザでは、Comp FET-76のプリセットのサーチやロード、プリセットの設定などが行えます。見た感じでは通常のArturiaプリセットブラウザをベースにしたシンプルなものに見えますが、使い方も至って簡単です。アッパーツールバーの左側にあるArturiaロゴ/プラグイン名の隣のライブラリーシンボルをクリックすると、プリセットブラウザが開きます。

ライブラリーシンボルをクリックすると、セーブされている全プリセットが画面に表示されます。このリストは色々な基準で並べ替えることができ、欲しいプリセットを簡単に見つけ出せます。リストにはコラムが2つあります。最初のコラムではリストをプリセット名または"Featured"の順にソートします。Featuredというのは、Arturiaが重要なプリセットだと分類したもののです。次のコラムではリストをタイプ、デザイナー、バンク順にソートします。

コラムのタイトル部分をクリックすると、その部分に表示される属性を選択できます。デフォルト設定ではタイプ (Type) が選択されています。この属性をデザイナー (Designer) に変更すると、リストの内容が変化し、2番目のコラムのタイトル部分、それまでTypeが属性として表示されていた部分がDesignerに変わります。

プリセットを削除したい場合は、削除したいプリセットを選択し、プリセット名フィールドをクリックすると表示されるメニューリストのいちばん下にある"Delete current"を選択します。
5.7. 最後にいくつかポイントを

最後にとても重要なことに触れておきます。通常、プラグインのノブやスイッチを変更する場合、そのパラメーターをクリックしてマウスを上下にドラッグします。スイッチの場合はクリックするだけでオンまたはオフに切り替えられます。パラメーターの設定値を細かくエディットしたい場合は、Ctrl+ドラッグ（macOSの場合はCmd+ドラッグ）をします。あるいは、右クリックをしてドラッグします。これらの方法でエディットすると、設定値がゆっくり変化しますので詳細な設定が簡単に行えます。

パラメーターをダブルクリックするとデフォルト設定値に戻ります。同じ操作をAlt+クリック（macOSの場合はOpt+クリック）でも行えます。

マニュアル本編はここまでです。これでComp FET-76プラグインのパラメーターや機能をすべてご紹介しました。本プラグインを私たちが開発した時と同じように楽しんでいただき、素晴らしいサウンドを創りだしていただければ、これほど嬉しいことはありません。
ソフトウェア・ライセンス契約

ライセンシー料（お客様が支払ったアートリア製品代金の一部）により、アートリア社はライセンサーとしてお客様（被ライセンサー）にソフトウェアのコピーを使用する非独占的な権利を付与いたします。

ソフトウェアのすべての知的所有権は、アートリア社（以下アートリア）に帰属します。アートリアは、本契約に示す契約の条件に従ってソフトウェアをコピー、ダウンロード、インストールをし、使用することを許諾します。

本製品は不正コピーからの保護を目的としプロダクト・アクティベーションを含みます。OEMソフトウェアの使用はレジストレーション完了後ののみ可能となります。

インターネット接続は、アクティベーション・プロセスの間に必要となります。ソフトウェアのエンドユーザーによる使用の契約条件は下記の通りとなります。ソフトウェアをコンピューターゲー上でインストールすることによってこれらの条件に同意したものとみなします。慎重に以下の各条項をお読みください。これに同意のない場合はアートリアとの契約を中止することに致し、このような場合には、ソフトウェアを含む製品は、正当な理由があれば、購入後30日以内にスタンドアローンに返品して払い戻しを受けてください。

1. ソフトウェアの所有権 お客様はソフトウェアが記録またはインストールされた媒体の所有権を有します。アートリアはディスクに記録されたソフトウェアならびに複製に伴って存在するいかなるメディア及び形式で記録されるソフトウェアのすべての所有権を有します。この許諾契約ではオリジナルのソフトウェアそのものを販売するものではありません。

2. 譲渡の制限 お客様はソフトウェアを譲渡、レンタル、リース、転売、サプライセ、貸与などの行為を、アートリア社会方に許諾無しに行うことは出来ません。譲渡等によってソフトウェアを取得した場合や、この契約の条件に従わない場合には本契約が無効となります。アートリア社がソフトウェアの使用にかかる権利や興味を持たないものとします。アートリア社は、ソフトウェアの使用に関して全ての権利を有しているものとします。

3. ソフトウェアのアクティベーション アートリア社は、ソフトウェアの違法コピーからソフトウェアを保護するためのライセンス・コントロールとしてOEMソフトウェアによる強制アクティベーションと強制レジストレーションを使用する場合があります。本契約の条項、条件に同意しない限りソフトウェアは動作しません。このような場合には、ソフトウェアを含む製品は、正当な理由があれば、購入後30日以内に販売店へ返品して払い戻しを受けております。

4. 製品登録後のサポート、アップグレード、レジストレーション、アップデート 製品登録後は、以下のサポート、アップグレード、アップデートを受けることができます。新バージョン発表後1年間は、新バージョンおよび前バージョンのサポートを提供します。アートリア社は、サポート（ホットライン、ウェブでのフォーラムなど）の体制や方法をアップデート、アップグレードのためにいつでも変更し、部分的または完全に改正することができます。製品登録は、アクティベーション・プロセス中、または後にインターネットを介していつでも行うことができます。このプロセスにおいて、上記の指定された目的のために個人データの保管、及び使用（氏名、住所、メール・アドレス、ライセンス・データなど）に同意するよう求められます。アートリア社は、サポートの目的、アップグレードの検証のために特定の代理店、またはこれらの従事する第三者にこれらのデータを転送する場合があります。

5. 使用の制限 ソフトウェアは通常、数種類のファイルでソフトウェアの全機能を動作する構成になっています。ソフトウェアは単体で使用できる場合もあります。また、複数のファイルで構成されている場合、必ずしもすべてを使用したインストールしたりすることはありません。お客様は、ソフトウェアおよびその付属物を何らかの方法で改正することにはできません。また、その結果として新たな製品とすることはできません。再配布や転売を目的としてソフトウェアそのものおよびその構成を改ざんする事はできません。

6. 著作権 ソフトウェア及びマニュアル、パッケージなどの付随物には著作権があります。ソフトウェアの改ざん、転売、併合などを含む不正な複製と、付随物の複製は固く禁じます。このような不法複製がもたらす著作権侵害等のすべての責任は、お客様が負うものとします。

7. アップグレードとアップデート ソフトウェアのアップグレード、およびアップデートを行う場合、当該ソフトウェアの旧バージョンまたは下位バージョンの有効なライセンスを所有している必要があります。第三者にこのソフトウェアの前バージョンを譲渡した場合、ソフトウェアのアップグレード、アップデートを行う権利を失効するものとします。アップグレードおよび最新版の取得は、ソフトウェアの新たな権利を授けるものではありません。前バージョンおよび下位バージョンのサポートの権利は、最新版のインストールを行った時点で失効するものとします。
8. 限定保証 アートリア社は通常の使用下において、購入日より30日間、ソフトウェアが記録されたディスクに瑕疵がないことを保証します。購入日については、領収書の日付をもって購入日の証明といたします。ソフトウェアのすべての黙示保証についても、購入日より30日間制限されます。黙示の保証の存続期間に関する制限が認められない地域においては、上記の制限事項が適用されない場合があります。アートリア社は、すべてのプログラムおよび付随物が述べる内容について、いかなる場合も保証しません。プログラムの性能、品質によるすべての危険性はお客様のみが負担します。プログラムに瑕疵があると判明した場合、お客様が、すべてのサービス、修理または修正に要する全費用を負担します。

9. 賠償 アートリア社が提供する補償はアートリア社の選択により (a) 購入代金の返金 (b) ディスクの交換のいずれかになります。お客様がこの補償を受けるためには、アートリア社にソフトウェア購入時の領収書をそえて商品を返却するものとします。この補償はソフトウェアの悪用、改ざん、誤用または事故に起因する場合には無効となります。交換されたソフトウェアの補償期間は、最初のソフトウェアの補償期間か30日間のどちらか長いほうになります。

10. その他の保証の免責 上記の保証はその他すべての保証に代わるもので、黙示の保証および商品性、特定の目的についての適合性を含み、これに限 Bergen。アートリア社または販売代理店等の代表者またはスタッフによる、口頭もしくは書面による情報または助言の一切は、あらたな保証を行なったり、保証の範囲を広げるものではありません。

11. 付随する損害賠償の制限 アートリア社は、この商品の使用または使用不可に起因する直接的および間接的な損害（業務の中断、損失、その他の商業的損害なども含む）について、アートリア社が当該損害を示唆していた場合においても、一切の責任を負いません。地域により、黙示保証期間の限定、間接的または付随的損害に対する責任の排除について認めていない場合があり、上記の限定保証が適用されない場合があります。本限定保証は、お客様に特別な法的権利を付与するものですが、地域によりその他の権利も行使することができます。