ユーザーズ・マニュアル

スペシャル・サンクス

ディレクション			
Frédéric Brun	Kevin Molcard		
開発			
Samuel Limier (lead)	Geoffrey Gormond	Timothée Behety	Marie Pauli
Kevin Arcas	Alexandre Adam	Baptiste Aubry	Alessandro De Cecco
Corentin Comte	Yann Burrer	Simon Conan	Loris De Marco
Mathieu Nocenti	Raynald Dantigny	Pierre-Lin Laneyrie	
デザイン			
Sebastien Rochard (lead)	Maxime Archambeaud	Julie Faganello	
Victor Morello	Christophe Bernard	Guillaume Langlais	
Morgan Perrier	Kevin Cestele	Nelly Reviriot	
サウンド・デザイン			
Victor Morello (lead)	Maxime Dangles	Torben Hansen	Alex Retsis
Maxime Audfray	Klaus Dieter-Pollack``	Ludo Hourdebaigt	Sebastien Rochard
Klaus Baetz	Fragment Audio	Andrew Huang	Jeremiah Savage
Clément Bastiat	Patrick Fridh	Jörg Hüttner	Starcadian
Jean-Michel Blanchet	Mord Fustang	Thomas Koot	Diego Tejeida
Gustavo Bravetti	Baptiste Le Goff	Tobias Menguser	Andrew Souter "Galbanum"
Denis Da Silva	Simon Gallifet	Matt Pike	
テスティング			
Benjamin Renard (lead)	Maxime Audfray	Florian Marin	
Matthieu Courouble	Arnaud Barbier	Germain Marzin	
ベータ・テスティン	グ		
Jeremy Bernstein	Dwight Davies	Randy Lee	Daniel Saban
Gustavo Bravetti	Ben Eggehorn	Terry Marsden	Tony Flying Squirrel
Andrew Capon	Boele Gerkes	William McKnight	Paul Steinway
Chuck Capsis	Lance Gilbert	Ken Flux Pierce	George Ware
Jeffrey M Cecil	Tom Hall	Matt Pike	Stephen Wey
Marco Correia "Koshdukai"	Jay Janssen	Fernando M Rodrigues	
マニュアル			
Leo Der Stepanians	Jose Rendon	Minoru Koike	Charlotte Metais
Randy Lee	Holger Steinbrink	Camille Dalemans	

© ARTURIA SA – 2020 – All rights reserved. 26 avenue Jean Kuntzmann 38330 Montbonnot-Saint-Martin FRANCE www.arturia.com 本マニュアルの情報は予告なく変更される場合があり、それについてArturiaは何ら責任を負いません。 許諾契約もしくは秘密保持契約に記載の諸条項により、本マニュアルで説明されているソフトウェアを供 給します。ソフトウェア使用許諾契約には合法的使用の条件が規定されています。本製品を購入されたお 客様の個人的な使用以外の目的で本マニュアルの一部、または全部をArturia S.A.の明確な書面による許 可なく再配布することはできません。

本マニュアルに記載の製品名、ロゴ、企業名はそれぞれの所有者の商標または登録商標です。

Product version: 2.0

Revision date: 23 January 2020

Pigmentsをお買い上げいただきありがとうございます!

本マニュアルではパワフルなヴァーチャルインストゥルメントの最新モデルArturia **Pigments**の機能や 操作方法等をご紹介します。

できるだけ早めに製品登録をお願いいたします! Pigmentsの購入時にシリアルナンバーとアンロックコードをEメールでご案内しております。製品登録時にはこれらが必要となります。

使用上のご注意

仕様変更について:

本マニュアルに記載の各種情報は、本マニュアル制作の時点では正確なものですが、改良等のために本ソ フトウェアの仕様を予告なく変更することがあります。

重要:

本ソフトウェアは、アンプやヘッドフォン、スピーカーで使用された際に、聴覚障害を起こすほどの大音 量に設定できる場合があります。そのような大音量や不快に感じられるほどの音量で本ソフトウェアを長 時間使用しないでください。

難聴などの聴力低下や耳鳴りなどが生じた場合は、直ちに医師の診断を受けてください。

はじめに

この度はArturia Pigmentsをお買い上げいただき誠にありがとうございます!

歴史的シンセサイザーの命脈につながる最新のヴァーチャルインストゥルメントArturia Pigmentsをお買 い上げいただき誠にありがとうございます。

優れた製品を開発するというArturiaの情熱は、Pigmentsにおいても例外ではありません。プリセットを 聴くだけでも、わずかにエディットするだけでも、機能のごく一部を垣間見るだけでも、あるいはお気に 召すままディープにダイブしても、Pigmentsの底知れぬものを感じ取っていただけると思います。イマ ジネーションの大海に船を出す時、またとない相棒になるのがPigmentsであることを確信しています。

Arturiaのハードウェアやソフトウェア製品情報のチェックに、www.arturia.comをご活用ください。ミュージシャンにとって不可欠で刺激的なツールが豊富に揃っています。

より豊かな音楽ライフを

The Arturia team

もくじ

 Pigmentsへようこそ! 11 新たなチャプターの第2ページ 	5
1.2. Pigmentsの主な機能	6
2. アクティベーションと最初の設定	8
2.1. 動作環境	8
2.2. Pigmentsライセンスのアクティベート	8
2.2.1. Arturia Software Center (ASC)	8
2.3. 最初に行う設定	9
2.3.1. オーディオとMIDIの設定:Windows	9
2.3.2. オーディオとMIDIの設定: macOS	10
2.3.3. プラグインで使用する	11
3. 機能の概要	12
3.1. リアーナヤル・キーホートの位置	12
5.2. チッパー シールバー	13
3.2.1. フリビットの目生	13
3.2.2. 米元以上	20
3.2.4. プリセットブラウザの概要	21
3.2.5. Svnthモードボタン	22
3.2.6. FXモードボタン	23
3.2.7. Segモードボタン	23
3.2.8. サウンドデザイン・ティップスビュー	24
3.2.9. マスターボリューム	24
3.2.10. MIDIラーンのアサイン	25
3.2.11. MIDIコントローラー・コンフィギュレーション	27
3.3. モジュレーション・オーバービューウィンドウ	28
3.4. モジュレーション・ソースグループ	28
3.5. マクロコントロール	29
3.6. ロワーツールバー	29
3.6.1. パラメーターの説明	29
3.6.2. MPEサポート	30
3.6.3. アンドゥ/リドゥ	31
3.6.4. MIDIチャンネル設定	32
3.6.5. パニックボタン	32
3.6.6. CPUメーター	32
3.6.7. マキシマイズビュー機能	33
4. プリセットブラウザ	34
4.1. フリセットのサーチ	34
4.2. ダクを使ってノイルダリンク	34
4.3. ダクガナコリーワイントワ	36
4.4. リーナリリルトワイントワ	30
4.3. ノリセット1 ノノオセンショノ 4.5.1 塩物のプリセットの情報を応用する	38 29
4.6 プリセットの選択・その他の方注	30
4.0. グリビノト の送外・ この1500月24	41
4.7.1. プレイリストを追加する	
4.7.2 プリヤットを追加する	
4.7.3. プリセットの並べ替え	42
4.7.4. プリセットの削除	42
4.7.5. プレイリストの削除	42
5. エンジンタイプ	43
5.1. 各エンジンで共通の機能	43
5.1.1. エンジンメニュー	43
5.1.2. エンジンのコピー	44
5.1.3. エンジンOn/Offボタン	44
5.1.4. エンジンチューン	45
5.1.5. ユニゾンモード	48
5.2. アナログエンジン	50
5.2.1. アナログエンジンチューニング	50
5.2.2. アナログユニゾンモード	50

5.2.3. オシレーター	
5.2.4. アナログ・アウトプットセクション	
5.2.5. ノイズセクション	
5.2.6. モジュレーション	
5.3. ウェーブテーブルエンジン	
5.3.1. ウェーブテーブル選択メニュー	
5.3.2. ウェーブテーブルブラウザ	55
533 オシロスコープ/ウェーブテーブルビューワー	59
	E0
5.3.6. フリク シンーモンユレーション (FREQ MOD: FM)	
5.3.7. ノエイスモジュレーション (PHASE MOD: PM)	
5.3.8. フェイズディストーション (PD)	
5.3.9. ウェーブフォールディング	65
5.3.10. ウェーブテーブル・アウトプットセクション	
5.3.11. ウェーブテーブル・セクション	
5.3.12. ウェーブテーブル・モジュレーター	
5.4. サンプルエンジン	69
5.4.1.1エンジンで6個のサンプル	
5.4.2. サンプルの選択	
5.4.3. サンプルブラウザ	
5.4.4. サンプルビューワー	
5.4.5. サンプルのエディット	
546 Manモード	75
5.4.7 サンプルエンジンチューン	79
5.4.8 Sample/Grainセクション	70
5.40 $d==-=$ $b = b > 0$	
5.4.9. ジワニュワーセンション	
5.4.10. ジェイバーモート	
5.4.11. アウトノットセクション	
5.4.12. モジュレーターオシレーター 	
6. フィルター	85
6.1. フィルターセクションの共通機能	85
6.1.1. フィルタービュー・ウィンドウ	
6.1.2. フィルター・ボリューム	
6.1.3. フィルター・パン	
6.1.4. フィルター・タイプメニュー	
6.1.5. フィルター・バイパス	
6.1.6. フィルター・エディットエリア	
6.1.7. フィルターのコピーとスワップ	
6.1.8. シリーズ、パラレル、またはその中間	
62 フィルタータイプとモード	88
6.2.1 MultiMode	88
6.2.2 SEM	89
6.2.2. 0EM	
0.2.5. Matrix 12	
b.2.b. Comp	
6.2.7. Phaser filter	
6.2.8. Formant	
6.2.9. LowPass Gate	
7. Filter Routing/Amp Modセクション	
7.1. Filter routing	
7.1.1. シリーズ接続	
7.1.2. パラレル接続	
7.1.3. パラレルとシリーズのミックス	
7.1.4. フィルター順序のスワップ	
7.2. VCAセクション	
7.2.1. Amp Mod	
7.2.2. Voice Pan	99
7.2.3. Voice Send Level	99
8 Tフェクトタブ	100
- ジュー イ エ ノ コ ア ノ	1000
8.1 共通機能	100

	8.1.1. バス/センドタブ	100
	8.1.2. エフェクトタイプの選択	100
	8.1.3. エフェクト・プリセット	101
	8.1.4. エフェクトとバスバイパス (On/Offスイッチ)	102
	8.1.5. エフェクトの接続順を変更する	102
8.2	バスA/Bルーティング	103
012	82.1.シリーズ	103
	822 / 51/1.	103
	0.22	103
0.2	0.2.3. 近クリース	103
0.5	- FXセントダブ	105
8.4.		104
	8.4.1.2つをシリースに、1つをハラレルに	104
	8.4.2.3つをバラレルに	105
8.5	.エフェクト・インサート/センドセクション	106
	8.5.1. バスA/Bボリューム	106
	8.5.2. センドバス:センド	106
	8.5.3. センドバス:リターン	107
8.6	. エフェクトリスト	107
8.7	. エフェクトパラメーター	108
	8.7.1. Multi Filter	108
	8.7.2. Param Eq	109
	8.7.3. Compressor	110
	8.7.4. Distortion	111
	8.7.5. Overdrive	112
	8.7.6. Wavefolder	
	877 BitCrusher	114
	878 Chorus	115
	9.7.0. Elanger	116
	0.7.0. Plater	110
	8.7.10. Phasei	117
	8.7.11. Stereo Pan	118
	8.7.12. Delay	119
	8.7.13. Tape Delay	120
	8.7.14. Reverb	121
9. シーク	ケンサータブ	. 122
9.1.	. Arp/Seqの共通機能	122
	9.1.1. Arp/Seqモード選択	122
	9.1.2. パターン・レンクス	123
	9.1.3. トラック	124
	9.1.4. トラックのエディット	125
	9.1.5. ランダム/リセットコラム	126
	9.1.6. ロックコラム	128
	9.1.7. ランダマイズ・セクション	128
	9.1.8. レイトセクション:Svnc. Swing. Hold	130
	9.1.9. ポリリズムモード	131
	9110 MIDIアウトプット	133
0.2	アルペジェイター (Arn)	122
5.2.	- 201 アルペジオキード	133
	921.7 / 1973 C - F	133 134
0.2	5.2.2.コード) // (Cool)	124
9.3	. シークンリー (Seq)	134
10 11 -	9.3.1.ビッナ	134
10. サワ	リンドテサイン・テイツノス	. 136
10.	1.	136
	10.1.1. ヴィジュアルキュー	137
10.2	2. エティットティップス	137
	10.2.1. サウンドデザイン・ティップスの追加/削除	139
	10.2.2. サウンドデザイン・ティップスのエディット	139
11. モジ	[、] ュレーション・ルーティング	. 140
11.	1. モジュレーション・セクションのアウトライン	140
	11.1.1. センターストリップ:3種類の表示	140
	11.1.2. ヴィジュアルキュー:Modルート	142
11.1	2. モジュレーションの構築	147
	11.2.1. 構築法1: Modソースビュー	147

11.2.2. 構築法2:Modターゲットビュー	
12. モジュレーション・ソース	155
12.1. Modソースグループ	155
12.1.1. キーボードタブ	
12.1.2. エンベロープタブ	159
12.1.3. LFOタブ	
12.1.4. ファンクションタブ	
12.1.5. ランダムタブ	
12.1.6. コンビネートタブ	
12.2. マクロ	171
13. Pigmentsのパラメーター	172
13.1. マスターグループ	172
13.2. モジュレーション・ソースグループ	173
13.2.1. MIDI	173
13.2.2. エンベロープ (VCA, Env 2, Env 3)	
13.2.3. LFOs (1, 2, 3)	
13.2.4. ファンクション (1, 2, 3)	
13.2.5. ランダム (チューリング、サンプル&ホールド、バイナリ)	
13.3. エンジン 1, 2	176
13.3.1. ウェーブテーブル	
13.3.2. アナログ	
13.4. フィルター1, 2	180
13.5. フィルタールーティング/アンプModセクション	181
13.6. エフェクト (FX) タブ	182
13.7. アルペジエイター/シーケンサー・パラメーター	185
14. ソフトウェア・ライセンス契約	186

1. PIGMENTSへようこそ!

1.1. 新たなチャプターの第2ページ

Pigmentsがデビューしたのは2018年末。この瞬間、Arturiaは新たな方向へ大きく歩みだしました。 PigmentsはArturia初の、既存のハードウェア名機のエミュレーション ではないバーチャルインストゥル メントです。すべてが新規開発で、その最高のサウンドのオシレーター、フィルター、エフェクト、気が 遠くなるほど強力なモジュレーションマトリクスにより、今までになかった新たな音の色彩を楽しめる、 エキサイティングなシンセサイザーです。

基本構成は馴染み深い内容ですが、よく見ると決して他にはないユニークなものです。普通にオシレーターはありますが、波形加工ツールの豊富さは圧倒的ですし、普通にフィルターもありますが、そのパワーと精密さでは唯一無二ですし、エンベロープも普通にありますが、そのフレキシビリティの高さには誰もが熱くなることでしょう。そして各ブロックを結ぶモジュレーションマトリクスこそが、Pigmentsとモンスターシンセと言わしめる核となる部分で、多くのユーザーが溺愛しているのもその部分です。

Pigmentsへの理解が深まるにつれ、ユーザーからは もっとの声が届き始めてきました。もっと多くのサ ウンドエンジンを。もっと多くのフィルターを。もっと多くのエフェクトを。そして、エフェクトも含め たモジュレーションのルーティングをもっと。音作りの可能性を広げるそうした声援を受け、より強化し た機能を内蔵したPigments 2.0をリリースすることができました!

Pigments 2.0では、サンプルベースのサウンドエンジンを追加し、サンプルプレイバックとグラニュラー シンセシスへの扉を開きました。また、パーチャルアナログエンジンにはユニゾンモジュレーションを 追加し、ローパスゲートも追加しました。シーケンサーとエフェクトセクションにも、新規のテープディ レイエフェクトなど数々のアップデートを行いました。さらにMPEにも対応し、MPEベースのインスト ゥルメント/コントローラーでPigmentsの各種機能を高精度にコントロールすることが可能になりまし た。こうした機能強化はほんの一部ですが、それでもPigmentsというモンスターシンセがさらにモンス ターになるほどパワフルなものと言えます。少し時間を使って、プリセットを聴いてみたり、各種メニュ ーを開いてみてください。これらが "ほんの一部" だということがきっとわかるかと思います。

PigmentsはWindowsとMac OS X上でスタンドアロンのインストゥルメントとしても動作しますし、主要 なDAWすべてのプラグインとしても動作します。分かりやすいMIDIラーン機能でほとんどのパラメータ ーをコントロールでき、プラグイン動作時もほとんどのパラメーターをオートメーションでコントロール できます。

1.2. Pigmentsの主な機能

以下はPigmentsの主な機能をリストにしたものです:

- 3種類のボイスエンジンタイプ:アナログ、ウェーブテーブル、サンプル/グラニュラー
- アナログエンジンの主な機能
 - 。 1ボイスにつき複数の波形を搭載したオシレーターを3基搭載
 - 。 パルス幅調節機能 (三角波、矩形波)
 - ハードシンク (OSC2->1)
 - · ピッチモジュレーションのクォンタイズ
 - 。 調節可能なノイズソース
 - 。 オシレーターのピッチと位相をプログラム可能なランダムでコントロール可能
 - フリケンシーモジュレーション (FM)
 - 3タイプのユニゾン (Classic, Chord, Super)
- ウェーブテーブル・エンジンの主な機能
 - プリセット・ウェーブテーブルのブラウズ/選択またはオリジナル波形が使用可能
 - 。 ウェーブテーブルのポジション間のモーフィングまたはジャンプ機能
 - ピッチモジュレーションのクォンタイズ
 - 3タイプのユニゾン (Classic, Chord, Super)
 - FM (リニアまたはエクスポネンシャル)
 - フェイズモジュレーション
 - フェイズディストーション
 - ウェーブフォールディング
 - 10種類の波形ソースと3種類のチューニングモードによる多彩なモジュレータ
- サンプル/グラニュラー・エンジンの主な機能
 - 。 サンプルプレイバックとグラニュラーシンセシスの両方の機能を内蔵
 - 。 プリセットサンプルのブラウズ/選択またはオリジナル波形が使用可能
 - ピッチモジュレーションのクォンタイズ
 - 3タイプのユニゾン (Classic, Chord, Super)
 - 。 最大6個までのサンプルを同時使用可能
 - 。 6個のサンプルの発音モード設定機能
 - 。 強力なサンプル編集とループ機能
 - ローパス/ハイパスフィルター
 - 。 より進んだグラニュラー機能+ランダム機能
 - 。 10種類の波形ソースと3種類のチューニングモードによる多彩なモジュレータ
- 豊富な連続可変フィルタータイプ
 - 。 3種類のアナログフィルター・タイプ:Mini, SEM, M12
 - ローパスゲートフィルター
 - バンドパス/ハイパス/ローパス、ノッチ、コム、フェイザー、フォルマントタ イプ、コンビネーション可能
 - 。 6dB/octから64dB/octまでのスロープ選択
 - 。 ほとんどのフィルターは自己発振可能なレゾナンス付き
 - 。 選択したソースによるフィルターFM
 - フィルターごとにステレオパンニングのモジュレーション可能
 - シリーズまたはパラレルのフィルタールーティング設定により自在な音色コン トロールが可能

- ほぼ無制限のモジュレーションソース数とデスティネーション数
 - チューリング、バイナリ、ファンクション、コンビネートなどのユニークなモジュレーションソース
 - 最大4系統のアサイナブルなマクロソースにより複雑なモジュレーションを同時 進行可能
 - 3系統の同期可能なLFOによるフレキシブルな波形、位相、トリガーソース、極性によるモジュレーション
 - 。 3基の高精度エンベロープのうち2基は豊富なソースでループ/トリガーが可能
- レベルやボイスパンニングを含む最終アウトプット段での柔軟なモジュレーション
- パワフルなステップシーケンサーとアルペジエイター
- スタジオクオリティのエフェクト
 - 3系統のマルチエフェクトチェイン:各エフェクトと3種類のエフェクトを同時 使用可能で合計9種類のエフェクトを同時使用可能
 - コーラス/フランジャー/フェイザー、リバーブ、ディレイ、EQ、ディストーション、フィルター、ウェーブフォルダー等々
- アップ/ダウン個別にレンジ設定が可能なピッチベンド(最大±36半音)
- MIDIアサインによるパラメーターコントロール
- ・ 音色変化に最も効果的なパラメーターをハイライト表示するサウンドデザイン・ティップス
 機能
- タイプやスタイル、音色名などでフィルタリング可能なプリセットブラウザ

リストがだいぶ長くなりましたが、これでもこの恐るべきインストゥルメントの可能性をほんの少しだけ ご紹介したに過ぎません。Pigmentsの開発は時折「これは仕事なんだ!」と思い出す必要があるほど相 当にエンジョイしました。そんなPigmentsは、プレイグラウンドであり、音色製造工場であり、それ自 体がひとつの世界なのです。

ではここから…Arturia Pigmentsの始まりです。

2. アクティベーションと最初の設定

2.1. 動作環境

Pigmentsは次のような環境以上のコンピュータで動作します:

Windows 7またはそれ以降 (64ビット)

- ・ 4GB以上のRAM、2.5GHz以上のCPU
- 1GB以上のハードディスク空き容量
- OpenGL 2.0互換のGPU

macOS 10.10またはそれ以降

- 4GB以上のRAM、2.5GHz以上のCPU
- 1GB以上のハードディスク空き容量
- OpenGL 2.0互換のGPU

Pigmentsはスタンドアロン動作のほか、各種DAWの64ビットAudio Units, AAX, VST2.4, VST3プラグイン インストゥルメントとしても動作します。

2.2. Pigmentsライセンスのアクティベート

Pigmentsのインストールが完了しましたら、次はライセンスのアクティベーションをします。

この作業は他のArturia製ソフトウェアでも使用するArturia Software Centerで簡単に行なえます。

2.2.1. Arturia Software Center (ASC)

ASCをインストールされていない場合は、こちらから入手可能です:

Arturia アップデート&マニュアル

Arturia Software Centerはリストのトップにあります。お使いのシステム (macOSまたはWindows) に合ったインストーラーをダウンロードしてください。

表示される指示に従ってインストールを行った後に次の操作をします:

- Arturia Software Center (ASC) を起動します
- お持ちのArturiaアカウントでログインします
- ASCのMy Productsセクションを下にスクロールします
- Activateボタンをクリックします

これで準備完了です!

2.3.1. オーディオとMIDIの設定: Windows

Pigmentsの画面左上にプルダウンメニューがあります。ここには様々な設定オプションが入っています。最初に必要なのは音を出したりMIDIの入出力を設定するAudio Settingsです。

Audio Settingsを選択するとAudio MIDI Settings画面が表示されます。この画面はmacOS版もWindows 版も動作は同じですが、使用可能なデバイス名称はお使いのハードウェアによって異なります。

画面上から各種オプションには次のようなものがあります:

- Device:音を出すためのオーディオドライバーを選択します。ここに表示されるドライバー はWindows Audioなどコンピュータ自身のドライバーのほか、ASIOなどもあります。お使い のハードウェアのオーディオインターフェイスの名称がこのフィールドに表示される場合も あります。
- Output Channels:オーディオアウトに使用するチャンネルを選択します。使用可能なアウトプットが2アウトプットのみの場合はそのアウトプットのみが表示されます。2チャンネル以上のアウトプットがある場合は任意のペアを選択できます。
- Buffer Size:コンピュータがオーディオの演算に使用するバッファのサイズを選択します。 小さく設定するとキーボードを弾いた時などのレイテンシーを低く抑えることができます。 大きく設定すると演算速度が遅くなる分CPU負荷は軽くなりますが、それでもレイテンシー は比較的小さいままです。お使いのシステムに適したパッファサイズを見つけてください。 最近の高速なコンピュータでしたら256や128サンプルでポップやクリックなどのノイズが 混入しないクリアなサウンドになります。クリックノイズなどが発生するようでしたら、パ ッファサイズを小さくしてみてください。レイテンシーはメニューの右側に表示されます。
- Sample Rate:オーディオアウトのサンプルレートを設定します。選択できるオプションはお使いのオーディオインターフェイスに準拠しますが、ほとんどのコンピュータ自身のハードウェアの場合、十分な最高48kHzで動作可能です。設定値を高くするとその分CPU負荷がかかりますので、96kHzなどのハイレートがどうしても必要という場合以外は44.1や48kHzで十分です。
- Show Control Panel:このボタンをクリックするとPigmentsで使用するオーディオデバイ スのシステムコントロールパネルにジャンプします。
- Play Test Tone:オーディオのトラブルシューティングをされる際にテストトーンを発して デバイス等の設定が正しいかどうかをチェックできます。
- Pigmentsで使用するMIDIデバイスはMIDI Devicesエリアに表示されます。チェックボック スをクリックしてPigmentsを演奏するMIDIデバイスを選択します。Pigmentsはすべての MIDIチャンネルを受信しますので、チャンネルを設定する必要はありません。複数のMIDIデ バイスを同時に選択することもできます。

2.3.2. オーディオとMIDIの設定: macOS

macOS版でもWindows版と同じ方法でオーディオとMIDIの設定が行えます。Windows版と異なり、 macOSはオーディオのルーティングにCoreAudioを使用し、オーディオデバイスの選択は2つ目のドロッ プダウンメニューで行います。それ以外は上記のWindows版と同じです。

2.3.3. プラグインで使用する

PigmentsはCubaseやLogic、Pro Toolsなど主要なDAWすべてのプラグインフォーマット (VST, VST3, AU, AAX) に対応しています。DAW上でプラグインインストゥルメントとしてロードできスタンドアロン動作時と同様に各種設定を行えますが、次のような違いがあります:

- Pigmentsのテンポ関係の設定はDAWで設定したテンポ/BPMと同期します。
- 多数のパラメーターをDAWのオートメーション機能で制御できます。
- DAWのプロジェクト上で複数のPigmentsを同時使用できます。スタンドアロン動作の場合、同時使用できるのは1つのみです。
- ディレイやコーラス、フィルターなどDAWに内蔵のエフェクトをPigmentsにかけることができます。
- PigmentsのオーディオアウトをDAW内のオーディオルーティングの好きな場所にルーティ ングできます (DAWの仕様に準拠します)。

3. 機能の概要

Pigmentsには驚異的な機能が数多く入っています。このチャプターでは各種機能の概要をご紹介しま す。きっとこの楽器のパワフルさや多彩さに驚かれることでしょう。

機能はパワフルながら、画面レイアウトは非常に分かりやすくなっています。使いやすさとクリエイティ ビティの両立という、Arturiaが最も大切にしていることがここにも表れています。

┃ ♪: 各機能の操作方法につきましては、それぞれのチャプターでご紹介します。

3.1. ヴァーチャル・キーボードの位置

ほとんどのソフトウェア・インストゥルメントにはヴァーチャル・キーボードがあり、外部MIDIデバイ スを使わずに演奏することができます。Pigmentsも同様で [p.155]、MIDIタブを開くと画面下半分がヴァ ーチャル・キーボードになっています。

3.2. アッパーツールバー

ツールバーは画面最上部にあり、便利な機能が豊富に入っています。それぞれを見ていきましょう。

3.2.1. プリセットの管理

プリセットの管理機能は画面左上のArturiaまたはPigmentsロゴをクリックすると表示されます。

3.2.1.1. Save Preset

!: この機能は現在選択しているプリ 合は、Saveの代わりにSave Preset Asを 覧ください。	セットに行った変更を上書き保 お使いください。Save Preset /	存します。元のプリセットを残しておきたい場 Asにつきましては、次のセクション [p.14]をご

♪: ファクトリープリセットは上書き保存できません。ファクトリープリセットをエディットして保存する場合は、Save Preset Asで保存してください。

Help

3.2.1.2. Save Preset As…

Save Preset Asを選択するとダイアログが表示され、保存する音色に関する情報を入力できます。音色名の他に音色制作者名やバンク、タイプも入力でき、音色の特徴を示すタグの選択や、新規にオリジナルのバンクやタイプ、スタイルを作成することもできます。これらの情報はプリセットブラウザに表示され、後でプリセットバンクを探す時に役立ちます。

コメントフィールドに文章を入れることもできます	, 音色の特徴をより詳しく書いておくのに便利です。
-------------------------	---------------------------

🛨 Save As	1						
NAME				AUT			
Odyssey				Ne	w Loops		
BANK							
User			~	Pa	d		~
Vintage Factor	Acid	Aggressive	Ar	nbient	Bizarre	Bright	Complex
Dark	Digital	Ensemble	Ev	olving	FM	Funky	Hard
Initial	Long	Multi/Split	N	loise	Quiet	Short	Simple
Soft	Soundtrack						
COMMENTS							
Huge atmosph adds random r	eric pad with p nodulation. "Tir	lucky attack. Mo ne" controls del	odwhe ay am	el softer ount. "F	is attack and slo K" controls choru	w filter envelop us and reverb an	e. "Timbre" nount.
						Cancel	Save

Save As画面

このコマンドはPigmentsでエクスポート (書き出し) したファイルをインポート (読み込み) する時に使用 します。ファイルには単独のプリセット、プリセットが入ったバンク全体、プレイリストの3種類があり ます。プリセット (とバンク) のファイルには **.pgtx** の拡張子が付き、プレイリストのファイルには **.playlist** の拡張子が付きます。

インポートを選択するとデフォルト設定のファイル参照先が表示されますが、他に使用したい別のフォル ダを指定できます。

インポートプリセット画面

エクスポートメニューにはPigmentsからファイルを書き出すためのいくつかのオプションがあり、音色 やプレイリストを他のPigmentsユーザーとシェアすることができます。また、ファイルをエクスポート して別のコンピュータで使用する場合にも便利です。

Export Preset

このコマンドでプリセットを1つだけエクスポートします。デフォルト設定のファイル書き出し先が表示 されますが、任意の場所にフォルダを作成して書き出すこともできます。

プリセットのエクスポート

Export All Playlists

プレイリストはギグやセッションごとに使用するプリセットをまとめておけるものです。このコマンドで 全プレイリストをエクスポートし、Pigmentsをインストールしている別のコンピュータでインポートし て使用することができます。

全プレイリストのエクスポート

Export Bank

エクスポートバンクは、プリセットの入ったバンクをエクスポートする時に使用します。バックアップや プリセットをシェアする場合に便利です。

エクスポートするバンクを選択

3.2.1.5. New Preset...

この機能を実行すると全パラメーターをデフォルト設定値にセットします。ゼロから音作りをしたい場合 に、プリセットを"クリーンな状態"にできます。

3.2.2. 環境設定

環境設定の各種機能を使用する場合は、画面左上のArturiaまたはPigmentsロゴをクリックします。各種 機能はプリセット管理機能の下にあります。

3.2.2.1. Resize Window

Pigmentsの画面サイズを、ヴィジュアル効果等の変更なく50%から200%の範囲で設定できます。ラップ トップなどディスプレイが小さめの場合はサイズを小さくすると便利な場合もあります。大きめのディス プレイやセカンドモニターで使用する場合は画面サイズを大きくしてパラメーターやグラフィックをよ り見やすくできます。画面のサイズで動作が変わることはありませんが、サイズが小さい場合は細かなオ ブジェクトや文字が見づらくなることもありますのでご注意ください。

	Save Preset As			
	Import		A: CI	assical Guitar C2 🔹 🔺 🕨
	Export			
	New Preset			
$\overline{\odot}$	Resize Window			Zoom Out (Cmd + Num-)
¢	Audio Midi Settings			Zoom In (Cmd + Num+)
	Tutorials			
	Help			
	About			
	Freq Mod Ring Mod			
		Dir		
		v		
				120%
				140%
	KEVROARD			180%
	KEYBOARD			

リサイズウィンドウのメニュー

3.2.2.2. マキシマイズ・ビュー

特定の状況の場合、ロワーツールバー [p.29]の操作でマキシマイズ・ビュー (フルスクリーン) にすることができます。詳しくはこちら [p.33]をご覧ください。

```
ここではオーディオとMIDIの入出力設定を行います。詳しくはオーディオとMIDIの設定 [p.9]をご覧ください。
```


3.2.3. その他のリソース

その他の便利なリソースを使用する場合は、画面左上のArturiaまたはPigmentsロゴをクリックします。 すると、次のようなオプションが表示されます。

3.2.3.1. Tutorials

チュートリアルのいずれか1つを選択するとPigmentsの各種機能の使用法などを紹介するツアーに出ることができます。チュートリアルはいずれもPigmentsの機能をフルに発揮するための手順を順番に解説しています。

	IIIV	ALL TYPES	
			Е
I→ Save Preset As			
→I Import		Basic Waveforms 🔹 🔸 🕨	L
I→ Export			
→I New Preset			
🌣 Audio Midi Settings	5		
💷 Tutorials		First Look	1
? Help	▶	Modulations	
③ About		Filters	
		Sampler Engine	
Detune Stereo		Granular Synthesis Engine	
Velo AT MW		Sequencer	
		Sound Design	

例えば、"First Look"チュートリアルではシンセ機能の色々な画面紹介がり、"Modulation"チュートリア ルではモジュレーションをパラメーターに割り当てる方法をご紹介しています。1つのチュートリアルが 終了すると、自動的に次のチュートリアルが始まります。

♪: チュートリアルを使用する場合は、事前にエディットバッファをクリアしておく必要があります。クリアせず にチュートリアルを使用しようとすると、警告メッセージが表示されますので、チュートリアルを始める前にエディ ット中のプリセット等をセーブしてください。

3.2.3.2. About

アバウトを選択するとPigmentsのバージョンや開発者のクレジットが表示されます。Pigmentsの画面を どこでもクリックするとアバウト画面が閉じます。

3.2.4. プリセットブラウザの概要

プリセットブラウザはツールバーにある縦の線が4本並んでいるアイコンをクリックすると表示されま す。この時、プリセットの選択に便利なフィルターや音色名フィールド、左右の矢印ボタンが表示されま す。

ALL TYPES	Odyssey*	

プリセットを選択するとそれを視覚的に認識出来る4つのプリビューウィンドウが表示されます。このうち2つはシンセエンジンのタイプ、2つはフィルタータイプをそれぞれ表示します。

	Odyssey*	•	•				🔒 Store M	aster 🥥 😡
SEARCH Q X Clear All	RESULTS 955 pres ≡ Featured ▲			g X	PRESET			
Filter By:				L.	Name Odyssey		iype Pad	
^ TYPES	Acoustic Drops	۲			Bank Pigments 2	.0	Designer New Lor	ops
Bass Brass Keys Lead Organ Pad	Exodar				Style Evolving	Long Soundt	rack	
etvice	Nebula							
Acid Aggressive Ambient Bizarre Bright Complex	Gyoza							
Dark Digital Ensemble Evolving Funky Hard	Strike	Ø			Comments			
Long Multi/Split Noise Quiet Short Simple	Beach Daze	۲			and slow filter en	velope. "Timbre" a	idds random modul	ation. "Time"
Soft Soundtrack	Lofi Piano	۲			controis delay an	iount. FX contro	is chorus and rever	o amount.
BANKS Bactory Biomonte 2.0 Usor	Sinoid Granular Lab	۲						Save As
G factory Fightents 2.0 Oser	Cute Little Thing	۲						
	Creepy Corridor Pad	۲						
Browse presets with MIDI Controller Keyl ab mkil	West Coast Keys	۲			ENGINE 1	ENGINE 2	FILTER 1	FILTER 2
A Reycab IIII						and the second se		
PLAYLISTS						And the second second		

プリセットブラウザのフル画面

この画面の詳細につきましては、プリセットブラウザ [p.34]チャプターをご覧ください。

プリセットブラウザボタン (丸囲み

プリセットブラウザの左下にはBrowse presets with MIDI Controllerというフィールドがあります。 Arturia製MIDIコントローラーをご使用の場合、MIDIマッピングをすることなくサーチしたプリセットの ブラウジングが行えます。

SEARCH											
Q									Clear Al		
Filter By:											
A TYPE:	Bras	e Ka	we	heo I	(ງເພລ	n	Pad			
Percussi	on S		sys SF	Leau X	Strin	inga	" Ter	r au nnlate			
		queno				No		nprate			
Acid	Aggre	ssive	Ambier	nt B			yLa	b 25			
Dark	Digita	Evo	KeyLab 49								
Long	- Multi/Split Noise			Qı	J	KeyLab 61					
Soft	Soundtrack				KeyLab 88						
A BANKS MiniLab mkll											
A Factory Pigments 2.0			ι	J	Minil ab						
0.144							vLa	b Ess	ential		
							, yLal	b mkl			
							yLa	b mkl	I 88		
							Ke	yLab n	nkll		
PLAYLISTS											

どのArturiaコントローラーが接続されているかをPigmentsが自動検出と設定をして簡単にプリセットの ブラウジングができます。詳しくはお使いのコントローラーの説明書等をご参照ください。

この機能を使用しない場合は、メニューウィンドウをクリックしてNoneを選択してください。

3.2.5. Synthモードボタン

Synthモードボタンを選択すると画面上半分に4つのメインセクションが表示されます:

- エンジン1タブ [p.43]
- エンジン2タブ [p.43]
- フィルターセクション [p.85]
- フィルタールーティング/アンプモジュレーションセクション [p.95]

各セクションにはそれぞれの機能やパラメーターがあります。詳細は、それぞれのチャプターをご覧くだ さい。

3.2.6. FXモードボタン

	ALL TYPES		Sona	ır 🗸	•			Synth	FX	Seq 📿	▼ Mast
FX : BUS A		Q	FX : BUS B			ወ	FX : SEND BUS				Q
🗢 Wavefolder 🕂 🔮 Or	erdrive 💠 🗢 Reverb	+	Oistortion	StereoPan	🕂 😃 Multi Filter	+	🗢 Delay	🕈 🗢 Delay	+	✿ StereoPan	+

FXボタンをクリックすると画面の上半分にFX (エフェクト) セクションが表示されます。次のような内容です:

- FX: バスAタブ
- FX: バスBタブ
- FX: センドバスタブ

各タブで最大3つのエフェクト同時使用でき、多彩なルーティングが設定できます。詳しくはFXチャプタ - [p.100]をご覧ください。

3.2.7. Seqモードボタン

Seqモードボタン [p.122]にはステップシーケンサーとアルペジエイターという強力なパターンジェネレ ーターが入っています。

3.2.7.1. ステップシーケンサー

Pigmentsの16ステップシーケンサーは通常のデータ入力の他に、ピッチやオクターブ、ベロシティ、ゲート長、スライドタイムの各パラメーターのランダム度をパーセンテージで設定してパターン生成させることも可能です。さらに、トリガープロバビリティの値を各ステップで設定することもできます。

パラメーターごとにトラックがあり、その長さを別々に設定してポリリズムにすることも可能です。また、一定の小節数をランダマイズさせないようにすることもできます。かなり狂気じみたシーケンサーですし、2つのシーケンスが完全に同一になる瞬間があったとすれば、もうあなたはこのシーケンサーを完全に使いこなしていることになるでしょう。ステップシーケンサーの各種機能の詳細は、こちら [p.134] をご覧ください。

3.2.7.2. アルペジエイター

アルペジエイターは、単音やコードを弾くとそれが分散和音になる機能です。単音の場合はその音をリピートし、コードの場合は各構成音を1音ずつ順番に発音します。

ステップシーケンサーとアルペジエイターは非常に似た機能で、アルペジエイターの場合はピッチをキー ボードで指定するくらいが違うポイントです。オクターブのジャンプ設定もランダマイズできますので、 極端に音程が離れた狂ったようなアルペジオも作れます。アルペジエイターの詳細は、こちら [p.133]を ご覧ください。

どちらか片方または両方のシンセエンジンでユニゾンコードモード [p.49]にすると、コードでアルペジオにすることも可能です。詳しくはコードモードのこちら [p.134]をご覧ください。

3.2.8. サウンドデザイン・ティップスビュー

Pigmentsはこの機能を採用した最初のArturiaソフトインストゥルメントです。サウンドデザイン・ティップス機能には次のような2つの主な目的があります:

- 各プリセットで音色変化にお勧めのパラメーターとそのレンジの表示
- オリジナルプリセットを作成時に、そのプリセットの音色変化に有効なパラメーターとその レンジの設定と後で思い出しやすくするためのメモ

ファクトリープリセット選択し、アッパーツールバーのSeqタブとマスターボリュームの間にある電球ア イコンにマウスオーバーしてみてください。これがサウンドデザイン・ティップスボタンです。

電球アイコンにマウスオーバーすると、画面の随所に小さな電球アイコンが表示され、画面中段にイエロ ーのボックスが表示され、その中にそのプリセットに関する情報がテキストで表示されます。また、いく つかのパラメーターがイエローにハイライト表示され、パラメーターによってはそのプリセットを制作 者がお勧めするパラメーターのレンジも表示されます。

アッパーツールバーのSynthとFXモードボタンにも、2つのエンジンタブにも、エンベロープタブにも小 さな電球アイコンが表示されます。これらは、それぞれのタブなどに入って各種パラメーターを操作して みてください、というお誘いのアイコンです。このように、ちょっとしたガイドがあることで楽しく音作 りが学べます。

サウンドデザインティップス機能は全プリセットで共通してかかるグローバル機能ですので、電球アイコンが既に表示されている場合もあります。この機能のオン/オフは、電球アイコンをクリックして切り替えることができます。この機能の詳細につきましては、こちら [p.136]をご覧ください。

3.2.9. マスターボリューム

マスターボリュームでPigments全体の音量を調節します。ノブをクリックしてドラッグすると+6から -70dBの範囲で調節できます。ノブをダブルクリックすると値を-12.0dBにリセットします。

小さなVUメーターのペアがマスターボリュームノブの右に表示されます。信号レベルが-12dBになるとメ ーターの表示色がオレンジになり、0dB (クリップ) に達すると表示色がレッドになります。クリップイン ジケーターが点灯すると、その状態を0.5秒間保持します。

♪: このパラメーターはデフォルト設定ではMIDI CC (コントロールチェンジ) #7に反応します。

3.2.10. MIDIラーンのアサイン

アッパーツールバーの右端にあるMIDIコネクタのアイコンはMIDIラーンモードに入る時に使用します。 MIDIにアサインできるパラメーターはパープル表示になり、フィジカルコントローラーにマッピングで きます。典型的な例ではエクスプレッションペダルをマスターボリュームにマッピングしたり、プリセッ ト選択の矢印ボタンをコントローラーのボタンにマッピングして、お使いのハードウェアキーボードから プリセットを切り替えることができます。

MIDIラーンモード (トップセクション

上図ではマスターボリューム (左上) がレッド表示になっています。これは既にMIDIアサインが済んでいることを示していますが、アサインを変更する [p.26]ことも可能です。

各モジュレーションソースグループ [p.155]内にもMIDIアサイン可能なパラメーターがあります。

MIDIラーンモード (エンベロープタブ

パープルのエリアをクリックすると、そのパラメーターがラーンモードに入ります。この時、フィジカル コントローラーのノブやフェーダー、ボタンなど1つを動かすとそのパラメーターがレッド表示に変わ り、そのパラメーターとコントローラーの操作子がリンクします。この時、ポップアップ画面が表示さ れ、MIDIアサインが完了したことをお知らせすると同時に、UNASSIGNボタンも表示されます。このボタ ンはMIDIアサインを解除する時に使用します。

LFO1の波形コントロールがアサインされた状態

アサインの解除は右クリックでも行えます。

3.2.10.2. MIN/MAXバリュースライダー

ポップアップ画面には最小値と最大値を設定するスライダー (MINとMAX) もあり、そのパラメーターの可 動範囲を制限することができます。例えばマスターボリュームの可動範囲を30-90%に限定したいとしま す。この場合、MINスライダーを0.30に、MAXスライダーを0.90に設定すると、フィジカルコントローラ ー上ではどう操作しても30%以下や90%以上のボリュームにはなりません。この機能はライブ時などで 音量やパラメーターの値を必要以上の極端な状態にしたくない場合に非常に便利です。

オン/オフやリニア/エクスポネンシャルなど、2つの設定値をスイッチするタイプのパラメーターの場合、フィジカルコントローラーのボタンにアサインすることが一般的ですが、お好みでフェーダーやその他のコントローラーにアサインすることも可能です。

3.2.10.3. レラティブコントロール・オプション

この画面の最後のオプションは「Is Relative」チェックボックスです。これはコントロール方法の少し特殊なタイプで、通常のMIDIアサインのように例えば0-127の範囲をリニアに変化させるのではなく、コントローラーのノブを回した方向とスピードに応じてパラメーターの値を少しだけ変化させたい場合に便利です。

具体的には「レラティブ」に設定したノブをマイナス方向へ回すと61-63のパラメーター値を送信し、プ ラス方向へ回すと65-67のパラメーター値を送信します。ノブを回すスピードによってパラメーターの反 応も変化します。お使いのハードウェアコントローラーの説明書等でこの機能に対応しているかどうかを ご確認ください。対応している場合は、MIDIアサインを設定する際にその機能をオンにしてください。

この方法に設定した場合、フィジカルコントロール (一般的にはノブ) を回すとソフトウェアのパラメー ター値は、ノブを回した瞬間にパラメーター値がジャンプするように急激に変化せず、その時の値からス ムーズに変化し始めます。

この方法は、コントローラーを操作した時にパラメーター値が急激に変化しないため、ボリュームやフィルター、エフェクトのコントロールに最適です。

3.2.10.4. 固定MIDI CCナンバー

特定のMIDIコンティニュアスコントローラー (MIDI CC) ナンバーは固定で、変更できません。それらは次 の通りです:

- ピッチベンド
- モジュレーションホイール (CC #01)
- ・ エクスプレッションコントローラー (CC #11)
- サステイン (CC #64)
- オールノートオフ (CC #123)
- アフタータッチ

その他すべてのMIDI CCナンバーはPigmentsの任意のパラメーターにアサインできます。

3.2.11. MIDIコントローラー・コンフィギュレーション

ツールバーの右端に小さな矢印アイコンがあります。これをクリックするとMIDIコントローラー・コンフ ィギュレーション (設定) メニューが開きます。このメニューでMIDIハードウェアからPigmentsをコント ロールするためのMIDIマップの管理が行えます。作成したMIDIマップをコピーしたりデリートしたり、 MIDIマップのファイルをインポートしたり、使用中のMIDIマップをエクスポートすることができます。

この機能により、ハードウェアのMIDIキーボードやコントローラーを変更した場合にMIDIマッピングを 最初からやり直す必要がなくなり、セッティングする時間を短縮できます。

上図のように、このメニューにはいくつかのオプションがあります:

- Default: MIDIアサインがされていない初期状態です。マッピングを最初から行う場合に使用します。
- Empty: すべてのMIDIアサインを消去します。
- Currently Used: MIDIアサインを変更すると自動的にこのオプションが選択されます。
- ・ チェックマーク:現在使用中の設定 (図ではKeyLab mkll) を示します。

3.3. モジュレーション・オーバービューウィンドウ

Pigmentsの画面中段には23種類のモジュレーションソースが並んでいます。これらは色々な方法で利用できます:

- モジュレーションのルーティングをするには、使用したいモジュレーションソース名をクリックします。するとモジュレーションオーバービューにモジュレーション・ターゲットビュー

 [p.142]が表示され、これから設定するルーティングと、既に設定済みのモジュレーションルーティングがリスト表示されます。
- モジュレーションソース名にマウスオーバーすると、そのソースでモジュレーションされているパラメーターの外周が明るく点灯します。
- 1つまたは複数のモジュレーションソースにつながっている (モジュレーションされている) パラメーター上にマウスオーバーすると、モジュレーション・オーバービューウィンドウ内 のそのソースが明るく点灯します。
- モジュレーションされているパラメーターにマウスオーバーすると、そこに小さな "+" アイ コンが表示されます。それをクリックするとモジュレーション・ソースビュー [p.141]が表 示され、23本のスライダーを調節して各ソースとそのパラメーターとのモジュレーションル ーティングの設定が行えます。

モジュレーションルーティングの詳細はこちら [p.140]をご参照ください。そこにはノブの外周とその色 が変化する [p.145]場合の意味を説明するチャートもあります。

3.4. モジュレーション・ソースグループ

モジュレーション・オーバービューの下にはモジュレーションソースのグループを選択する6つのタブが あります。タブを選択するとPigmentsの画面下部にモジュレーションソースのサブセットが表示され、 そこでエディットや調節が色々な方法で行えます。そこでソースにエディット等をすると、モジュレーシ ョン・オーバービューでアサインしたそのソースのデスティネーション(モジュレーション先)の動きに 反映されます。

モジュレーシ・ンソースの中にはMIDIタブにあるヴァーチャル・キーボードやホイールのように極めて シンプルなものもあります。他方ファンクションのように非常に複雑な動きを作れるものもあります。各 ソースは複数のパラメーターにルーティングでき、各パラメーターは複数のソースでモジュレーションを かけることができます。

各モジュレーション・ソースグループの詳細は、それぞれをクリックしてください。

• キーボードタブ [p.155]

この中にはピッチベンドレンジ、マイクロチューニング、グライドパラメーター等の設定も入っていま す。

- エンベロープ [p.159]
- LFO [p.160]
- ファンクション [p.161]
- ランダム [p.166]
- コンビネート [p.169]

マクロコントロールはモジュレーションソースのグループで、画面に常に表示されています。概要は次の セクションをご覧ください。

3.5. マクロコントロール

4系統のマクロはプリセット音色を変化させる手っ取り早い方法です。マクロの利点は外部MIDIコントロールをアサインでき、これにより数多くのパラメーター(好きなだけ設定できます)をワンアクションで コントロールすることができます。

マクロのパラメーターをアサインする方法は簡単です。ノブの上のMボックス (M1はマクロ1という意味です)を1つクリックし、LFOやエンベロープなどモジュレーションソースを選択する方法と同様 [p.140] に、デスティネーションを選択します。


```
👤 ♪:各マクロコントロールの下に名前を入力できます。これはプリセットごとに設定できます。
```

3.6. ロワーツールバー

Pigmentsの画面最下部にはロワーツールバーがあります。ここには決して見逃して欲しくない便利な機能が入っています。

3.6.1. パラメーターの説明

ロワーツールバーの左部分には、エディット中のパラメーター名とその簡単な説明が表示されます。その パラメーターの設定値は画面上のノブやスイッチなどを動かすと表示されます。

パラメーターをエディットせずに設定値だけをチェックしたい場合は、そのパラメーターにマウスオー バーするとその近くに表示されます。

パラメーター値と説明の表示

PigmentsはMIDIポリフォニック・エクスプレッション (MPE) に対応しています。これはMIDIプロトコル に新たに追加されたもので、マルチタッチ方式コントローラー等で和音を押さえた時などに、ピッチベン ドやモジュレーションなどのコントロールメッセージを各ノートごとに送信できる機能です。各ノートの コントロールメッセージは別々のMIDIチャンネルとして送信され、Pigmentsなどの対応シンセサイザー で解析して、各ノートのコントロールをします。

MPEボタン

MPEサポートは、ロワーツールバーの電源アイコンのとなりにMPEと表示されているボタン (MPEボタン) をクリックすることでオン/オフ切り替えができます。オンにするとMPEコンフィギュレーションパネル が表示されます:

10000										
Të 🗙	Ta × MPE CONFIGURATION									
		Enable MPE								
When MPE is enabled, the Slide controls the Macro 1										
				Ra						
	48	Absolute	74							
-	Bend Range	Slide Mode	Slide CC	-						
_										
11	=0	FUNCTION	8	RAN						

MPEコンフィギュレーションパネル

- Enable/Disable: MPEボタンと同じ機能です。
- Bend Range:各ノートのピッチベンドレンジの最大幅を96半音までの範囲で設定します (デフォルト設定=48)。この設定はお使いのハードウェアMPEコントローラーでの設定と同 じにしてください。
- Slide Mode:スライド操作(同じキーの上で指を上下に動かした場合)に対する反応モード を設定します。
 - Absolute の場合、その時の指の位置情報がそのままPigmentsのマクロ1に送信 されます。
 - Relative Bipolarの場合、最初にキーのどの位置を押したかに関係なく、初期値として64をPigmentsのマクロ1に送信し、その後、指の動きに応じて値が64から増減します(上方向で値増加、下方向で値減少)。
 - Relative Unipolar の場合、最初にキーのどの位置を押したかに関係なく、初期 値として0をPigmentsのマクロ1に送信し、その後、指の動きに応じて値が0か ら増減します(上方向で増加、下方向で減少)。
- Slide CC:スライド情報に使用するMIDI CCナンバーを選択します。デフォルト設定は74で すが変更できます。MPEがオンの場合、選択したMIDI CCは他の用途に使用できなくなりま すのでご注意ください。

3.6.3. アンドゥ/リドゥ

Pigmentsはアンドゥ/リドゥが使用でき、音色などのエディット過程を順を追って確認するのに便利で す。さらに便利なツールとして、UndoとRedoボタンの間にUndo/Redo Historyボタンがあります。 Historyボタンをクリックするとアンドゥやリドゥの履歴がリスト表示され、複数のアンドゥ/リドゥをジャンプすることができます。

Undo, History, Redoボタン
このウィンドウには使用中のMIDIチャンネルが表示されます。ここをクリックするとウィンドウが開き選 択できる設定値 (All, 1-16) が表示されます。

~	MIDI	Channe	el
mb 3			4
	11		
_	12		
C	13		
	√ 14		
		Panic	CPU

選択したMIDIチャンネルにチェックマークが付きます。

3.6.5. パニックボタン

音が止まらなくなってしまったなどの問題が生じた場合にパニックボタンをクリックするとすべての MIDI信号をリセットします。

3.6.6. CPUメーター

CPUメーターはPigmentsが消費しているCPUパワーを表示します。ユニゾンボイス機能 [p.60]などボイス数を多く使用するとCPU消費量がアップします。

3.6.7. マキシマイズビュー機能

Pigmentsの画面表示の拡大率を高く設定している場合で、一部のパラメーターがディスプレイに表示しきれていない場合、ロワーツールバーの右端にブルーの矢印アイコンが表示されます。

マキシマイズビューボタン (右端

この矢印アイコンがマキシマイズビューボタンで、画面左上のプルダウンメニューで画面の拡大率を変更 しなくてもクイックに画面サイズを再調整する機能です。このボタンをクリックするとPigmentsの画面 が再びセンタリングし、ディスプレイの最下部まで画面が拡張して可能な限り全画面が表示できるよう になります。

それでも全画面を表示しきれていない場合は、リサイズウィンドウ機能のプルダウンメニュー [p.18]で拡 大率を小さくしてください。Pigmentsの全画面を表示できれば、上下にスクロールする煩わしさはなく なりますが、小さな文字が読みづらくなることもありますので、使いやすいバランスを見つけてくださ い。

4. プリセットブラウザ

プリセットブラウザでPigmentsの音色をサーチしたり、ロードや管理を行います。表示方法 (ビュー) に は何種類かありますが、どの方法も同一のプリセットバンクを参照しています。

サーチビューにアクセスするには、ブラウザボタン (本棚にある本のようにも少し見えるアイコン)をク リックします。

プリセットブラウザボタン

4.1. プリセットのサーチ

サーチ画面にはいくつかのセクションがあります。最上部のサーチフィールドをクリックして音色名でプ リセットリストをフィルタリングしてサーチすることができます。サーチ結果は「Results」コラムに表 示されます。サーチフィールドのClearボタンでサーチを解除します。

SEARCH	RESULTS 71 presets	К
Q Ian X Clear All		
Filter By:		Pad
^ TYPES	Clanky Chord	Percussion
Bass Brass Keys Lead Organ Pad	Fanleland	Kevs
Percussion Sequence SFX Strings Template		
^ STYLES	Flange Tube	Bass
Acid Aggressive Ambient Bizarre Bright Complex	Gamelan	
Dark Digital Ensemble Evolving Funky Hard	Metalanog	Percussion

サーチフィールドに入力してフィルタリング

上図の例ではサーチフィールドに"!", "a", "n"の文字が入力されています。この場合、この3文字がこの順 序で並んでいる文字列 ("lan") がプリセット名に含まれている全プリセットをサーチ結果に表示します。

4.2. タグを使ってフィルタリング

タグを使ってプリセットを絞り込むこともできます。例えばTypesフィールドのKeysをクリックすると、 そのタグが付いたプリセットだけを表示します。

SEARCH	RESULTS 138 presets >	4
Q X Clear All		
Filter By:	Acoustic Drops 🛞 Keys	
A TYPES	Gyoza 🛞 Keys	
Bass Brass Reys Lead Organ Pad Percussion Sequence SFX Strings Template	Lofi Piano 🛞 Keys	

タグはコマンド (macOS) またはCtrl (Windows) キーを押しながら複数選択することもできます。例え ば、探しているプリセットのタグがKeysなのかPadなのかが不明の場合、両方を選択することでサーチ対 象を拡げることができます。

SEARCH	RESULTS 145 presets	*
Q Clear All		
Filter By:	Acoustic Drops 🛞 Keys	
TYPES	Gyoza 🛞 Keys	
Percussion Sequence SFX Strings Template	Lofi Piano 🛞 Keys	

リザルトコラムに表示されたプリセットは、矢印ボタンをクリックしてタイプ別などでソートすること ができます。

】 ♪: TypesやStylesなどのタグフィールドは各フィールドのタイトルの左にある-/+ボタンで表示/非表示を切り替え
ることができます。

複数のサーチフィールドを使った絞り込みサーチも可能です。テキストサーチに加えてTypesやStylesの 各タグを併用することで、そのすべてに該当したプリセットに絞り込むことができます。タグを選択解除 するとそのタグがサーチ条件から外れて、サーチを最初からやり直すことなくサーチ対象を拡げることが できます。

SEARCH Q m X Clear All	RESULTS 45 presets ≡ Featured ▲ ≡ Type ▲	A S
Filter By:		
	Mallets Dream 🛞 Keys	
Bass Brass Keys Lead Urgan Pad Percussion Sequence SEX Strings Template	Kalimbox 🛞 Keys	
reiteren er an er ange reinpare		

4.3. タグカテゴリーウィンドウ

タグカテゴリーウィンドウはそのタイトルの近くにある-/+ボタンで開閉できます。

Q Clear All	
Filter By:	
A Factory Pigments 2.0 User	

タグカテゴリーウィンドウが閉じた状態

SEARCH					
Q					Clear All
Filter By:					
– ТҮРЕ:					
STYLI					
Acid	Aggressi	ve Ambier	it Bizarre	Bright	Complex
Dark	Digital	Ensemble	Evolving	Funky	Hard
Long	Multi/Sp	lit Noise	Quiet	Short	Simple
Soft	Soundtra	ck			
~ BANK					
🛞 Fac	tory Pi	gments 2.0	User		

Stylesウィンドウが開いた状態

4.4. サーチリザルトウィンドウ

Featuredまたは**Name**別でサーチ結果を表示する場合は、最初のリザルトコラムのメニューボタンをクリックします。矢印ボタンをクリックするとソート順 (ABC順) が逆順になります。

\equiv Featured $ullet$	
✓ Featured	A
Name	
Beach Daze	Ŕ
90s Science Fiction	n Act 🔗

同様に、2番目のリザルトコラムも**Type、Designer**または**Bank**別に表示させることができ、矢印ボタン でソート順を昇順または降順に切り替えられます。

RESULTS 955 presets		*
Weird Bell	🗸 Туре	
Western Piano		
	Bank	
western winds		
When Tomorrow Comes	Keys	

プリセットを色々試していたり、音色を作っている時に、そのプリセット名の右にあるハートマークをク リックすると、そのプリセットをフェイバリット (お気に入り) になります。後でハートアイコンをクリッ クすると、フェイバリットのプリセットがリザルトウィンドウに表示されます。

RESULTS 677 preset			*
	$\textcircled{\below}{\below}$	Victor Morello	•
Beach Daze	Ø		۲
90s Science Fiction Act			•
Acid Funk Chords	Ø	Matt Pike	
Space Pad	A		

これらのソートやフィルタリング機能を必要に応じて使い分けたり、併用することで、いつでも欲しいプ リセットを見つけることができます。

4.5. プリセットインフォセクション

ブラウザウィンドウの右側には個々のプリセットの情報が表示されます。ユーザープリセットの場合は NameやType、Favoriteなどの情報を変更できます。

各種情報を変更するには、Nameフィールドに入力したり、Typesを選択したり選択していたものを解除 したりします。あるいはプルダウンメニューを開いてバンクやタイプを変更することもできます。また、 リストの最後にある+サインをクリックして新規スタイルを追加することもできます。これらの変更をし た後はSaveをクリックして変更内容を保存します。

Results 648 presets			Preset	
≡ Name		~ 0	Name single osc	
Simpleton Saw			Bank User	
single osc	Template		Style 🗸 User	
Single OSC Parallel Filters			Vintaç BANK FLO	
Single OSC Serial Filters			Bright Playlist	

プリセットのバンクを変更

タイプを変更しコメントを追加してSaveをクリック

4.5.1. 複数のプリセットの情報を変更する

ライブの準備などで複数のプリセットを別の同一バンクに移動させたり、複数のプリセットに同一のコメ ントを同時に入れたい場合、これも簡単に行なえます。Ctrlキー (macOSはコマンドキー)を押しながら同 時に変更したいプリセットをリザルトリストから選択し、必要な変更をして最後にSaveをクリックすれ ば完了です。

Results 85 presets		Preset
		Name Multiple Selection Type Keys
		Bank Factory Designer Multiple Selection
Mystic Pluck	🖄 Keys	Chile
		Style
		Ambient Bright Complex Digital Evolving Long Simple
Glitch Releases	🙆 Keys	Soft
Arcalogue	🙆 Keys	
Tuesdays	🙆 Keys	
Eastern Explorer	🛞 Keys	Multiple Selection
JPP38000	🖄 Keys	
Kalimbox	🛞 Keys	Save As

♪: ファクトリープリセットの情報を変更したい場合は、最初にそのプリセットをSave Asコマンドでユーザープリ セットとして再保存します。そうすることで、そのプリセットのインフォセクションにEditとDeleteボタンが表示さ れ、情報を変更できます。

4.6. プリセットの選択:その他の方法

サーチメニューの右にあるプルダウンメニューでプリセット選択のその他の方法を選べます。1つ目はサ ーチフィールドに入力した文字列にマッチしたプリセットを表示するフィルターです。例えばサーチフィ ールドに**Be**という語を入れた場合、その条件にマッチしたプリセットがここに表示されます。

	х	FILTER		Crystal Bells
Ôb		FILTER		Full Function Beat
Search		ALL TYPES		Beethoven
2 De		Bass	•	Future Berlin School
+ TYPES		Brass	· •	As Below
+ STYLES		✓ Kevs		Blistered Beating

フィルタリングの結果はサーチ条件で変化します

同様に、サーチフィールドの**Types**を**Sequence、Styles**に**Aggressive**を選択していた場合、絞込みされ たサーチ結果が表示されます。

Search Ø Be		FILTER ALL TYPES	•	To be Arpe Lebeme
- TYPES Bass Brass Keys	√	Bass Brass Keys		Super Sabe - To be Arpeg Lebeme
Percussion Sequence SF STYLES Acid Aggressive Ambie		Lead Organ Pad		Super Sabe

フィルタリングの結果はサーチ条件で変化します

プルダウンメニューでAll Typesを選ぶと、サーチ条件がバイパスになり、全プリセットが表示されます。

メニューの線から下にあるタイプを選択した場合もサーチ条件を無視してそのタイプ (BassやBrass、FM など) にマッチしたプリセットが表示されます。

FILTER		2 Sharp	Fla
		80s Disco	Fro
FILTER		Acid mouth	Fu
ALL TYPES		Agressive Squared Bass	Ge
Bass		Angry Picker	Gig
Brass	Þ	Apocalipse Snow	Gro
Keys		Artefax	Gro

プリセットをタイプ別に選択

ツールバーの中央にあるネームフィールドをクリックすると、選択できるプリセットがすべて表示されま す。この時に表示されるリストは、サーチフィールドに入れていた検索条件にマッチしたものになりま す。そのため、例えばサーチフィールドで"Keys"タグを選択していた場合、ネームフィールドをクリッ クするとそのタグにマッチしたプリセットだけが表示されます。

Crystal Bells	•	•
Mystic Pluck		Fami
		FM T
Crystal Bells		Mad
JPP38000		Mak
Pelog Dreamer		Mult
When Tomorrow Comes		Nooz
Tuesdays		One
Ambient Bi-timbral		Piac

ツールバーにある左右の矢印ボタンはプリセットリストを切り替える時に使用します。このボタンをクリ ックすると、全プリセットリストと検索条件でフィルタリングしたサーチ結果のリストが切り替わりま す。

4.7. プレイリスト

プリセットブラウザの左下のコーナーにはプレイリスト機能があります。プレイリストは、目的別などで プリセットをグルーピングできる機能で、例えばライブやレコーディングプロジェクトごとに使用するプ リセットをグルーピングしておくのに便利です。

4.7.1. プレイリストを追加する

プレイリストを新規作成するには、最下部のフィールド内をクリックします:

Playlists	
1 - Session faves	
2 - Live set 1	
3 - Live set 2	
4 - Ambient Chill	
+ New playlist	

プレイリストに名前を付けるとそれがプレイリストメニューに表示されます。ここで付けた名前はその行 の後ろにあるえんぴつアイコンをクリックすることでいつでも変更できます。

4.7.2. プリセットを追加する

プレイリストに入れるプリセットの検索にも、サーチウィンドウのすべての機能が使用できます。必要な プリセットが見つかりましたら、それをプレイリスト名のところにドラッグします。

Playlists				Interstellar Saxophon Ensem	
1 - Session faves				Italo Boyz	Victor Morello
2 - Live set 1				JPP38000	Victor Morello 🗢
3 - Live set 2	JPP38000	(4	Victor N		
4 - Ambient Chill				Kalimbox	
+ New playlist				Made Of Crystal	Victor Morello

サーチ結果リストからプレイリストにドラッグ

プレイリストの内容を見るには、プレイリスト名をクリックします。

4.7.3. プリセットの並べ替え

プレイリスト内のプリセットは並べ替えることができます。例えばあるプリセットをスロット1から3に 移動させたい場合、そのプリセットを移動させたい場所にドラッグ&ドロップします。

サーチ結果リストからプレイリストにクリック+ドラッグで移動

プリセットの位置を移動させると、それに応じて他のプリセットの位置も変わります。

4.7.4. プリセットの削除

プレイリストからプリセットを削除するには、そのプリセットの行の後ろにある"X"をクリックします。

² Zap Factory		Percussion	
³ S&H Melody Maker	Ø		
4 Damaged 808 Base	Ø		
5 Subtitles	Ø		•
Familiar Faces	\bigotimes	Keys	° X

Xをクリックしてプレイリストから削除

4.7.5. プレイリストの削除

プレイリストを削除するには、そのプレイリストの最終行の終わりにある"X"をクリックします。これは プレイリストのみを削除するもので、プレイリストに入っていたプリセットは消去しません。

Playlists	~
1 - Session faves	
2 - Live set 1	
3 - Live set 2	
4 - Ambient Chill	🖌 🗙
+ New playlist	

Xをクリックしてプレイリストを削除

5. エンジンタイプ

好きなところへ素早く移動できるパワフルなエンジンが搭載されたクルマをイメージしてみてくださ い。今度は、それと同じパワーで、それぞれに特徴のあるエンジンが3基搭載されたクルマをイメージし てみてください。そしてそのうち2つのエンジンが同時使用できるように完璧に設計され、組み込まれて いることに気付くのです。これで行けないところはもはやありません。

Arturia Pigmentsにはいずれもパワフルなエンジンが3基搭載されており、未踏の地へ踏み込んでみよう というクリエイティブな気持ちにさせてくれます。そしてクルマの例と同様、1つのプリセット内で2つ のエンジンを同時使用できるのです。

では、Pigmentsのパネルに隠された3つの驚異的な音のエンジンを見ていきましょう。

5.1. 各エンジンで共通の機能

エンジンタブの以下の機能はアナログ、ウェーブテーブル、サンプルの各エンジンタイプで共通の機能で すので、本マニュアルのこのセクションでご紹介します。各エンジン特有の機能につきましては、アナロ グエンジン [p.50]、ウェーブテーブルエンジン [p.54]、サンプルエンジン [p.69]のセクションをそれぞれ ご参照ください。

5.1.1. エンジンメニュー

ここをクリックするとメニューが開いてエンジンタイプ (アナログ、ウェーブテーブル、サンプル) を表示 します。その時選択されているエンジンタイプの外周がブルーで表示されます。エンジンタイプを選択す るとメニューが閉じます。

ENGINE 1 🖻	Wavetable • ENGINE 1 TYPE	
주 Analog		-w∯∿ Sample

5.1.2. エンジンのコピー

例えばあるエンジンをもう一方にコピーして、別のエディットをしたい場合、あるいはエディット中に面 白いセッティングができて、さらに色々エディットしてみたいけれど一旦バックアップのつもりで現状を コピーしておきたいという場合にエンジンのコピーが便利です。コピー方法には2種類があります。コピ ーするにはエンジンナンバーの右にあるドキュメントが2つ重なっているアイコンをクリックして、表示 されるメニューからコピー方法を選択します。

!: コピーすることでその時まで選択していたエンジンタイプが変更される場合がありますが、元のオシレーターの 各種設定はプリセットをセーブする時点まで保持されます。

5.1.2.1. Copy to Engine X

このオプションを選ぶとエンジンタイプとアウトプットの各種設定を含むオシレーター設定がもう一方 のエンジンタブにコピーされます。このオプションではコピー先のエンジンタブのモジュレーションルー ティングはそのまま保持されます。

このオプションは例えば2つのエンジンタブを同じオシレーター設定にして両方をわずかにデチューンさ せたい場合に便利です。ファットなサウンドを素早く作りたい場合に適しています。但し、モジュレーシ ョンルーティング等の設定を含めてコピーしたい場合は、次のオプションが適しています。

5.1.2.2. Copy to Engine X with modulation

このオプションはエンジンタイプやアウトプットの各種設定を含むエンジンタブのすべての設定をコピーします。通常のコピーとの違いは、オシレーターに関係したモジュレーションルーティングも含めてコ ピーする点です。オシレーターに重要なモジュレーションルーティングを設定しているエンジンをコピー する場合は、こちらのオプションのほうが適しています。

5.1.2.3. Reset engine

このオプションでエンジンの各種設定を初期化してデフォルト設定の状態にします。

5.1.3. エンジンOn/Offボタン

両方のエンジンをレイヤーすると非常に多彩なプリセットを簡単に構築できます。片方のエンジンのエディットをしたい場合には、音を出したくないほうのOn/OffボタンをクリックするだけでOKです。この時、ミュートしたいほうのエンジンタブを開く必要はありません。

タブがグレー表示になっている場合、そのエンジンはミュート状態になっています。エンジンタブを再び オンにしたい場合はOn/Offボタンをもう一度クリックします。するとテキストやアイコンが点灯し、そ のエンジンがオンになりますので、画面を一目見るだけで状態をすぐに把握できます。

5.1.4. エンジンチューン

選択したエンジンのチューニングを調節します。エンジンタイプによって動作が次のように異なります:

- アナログエンジン:コース/ファインチューニングを変更すると3つのオシレーターのチュー ニングがすべて同時に変更されます。
- ウェーブテーブルエンジン:コース/ファインチューニングを変更すると選択したウェーブ テーブルの全ポジションのチューニングが変更されます。
- サンプルエンジン:コース/ファインチューニングを変更するとロードされているすべての サンプルのチューニングが同時に変更されます。

5.1.4.1. Coarse tune

このノブで各エンジンのチューニングを半音単位で変更します。アナログとウェーブテーブルエンジンの 場合、±60半音 (5オクターブ) の範囲で変更でき、サンプルエンジンの場合は、±36半音 (3オクターブ) の範囲で変更できます。

5.1.4.2. Quantize Mod

ほとんどのPigmentsのパラメーターと同様、コースチューニングも好きなソースでモジュレーションす ることができます。しかし他と異なるのは、必要なノート(音程)で発音するようにできる点です。クォン タイズモジュレーション機能で不要なノートをモジュレーションソースが作り出さないようにフィルタ リングすることができます。

この機能を使用するには、Coaseノブの右にあるQボタンをクリックします。ノートの選択はえんぴつア イコンをクリックしてミニキーボードを表示させます。デフォルト状態では12音すべての半音がオンに なっています:

点灯しているノートがオンになっているノートです。オフにするにはクリックして消灯させます。オフに なっているノートをオンにするにはクリックして点灯させます。ミニキーボードの最初のノートはルート 音のためオフにできません。 クォンタイズモジュレーション機能はキーをCにした場合の相対的な音程のインターバルを設定する機能 です。例えばこの機能でハーモニックマイナースケールに設定したい場合、Cのハーモニックマイナース ケールの構成音をミニキーボードで設定します:

設定後、MIDIノートを受信するとそのノートをルート (トニック) にしたハーモニックマイナースケール がトリガーされます。例えば、Ebを弾くとEbのハーモニックマイナースケールが鳴ります。

クォンタイズモジュレーションでもう1つ気付くことは、不要なノートをオフにするとモジュレーション にある種のデコボコができる点です。例えばモジュレーションホイールをモジュレーションインプットに し、モジュレーションアマウント (量)を0.11 (1オクターブ)に設定したとします:

CC #1 値	半音階	ハーモニックマイナースケール
0-10	С	C
11-20	C#	C
21-30	D	D
31-39	D#	D#
40-49	E	D#
50-59	F	F
60-69	F#	F
70-79	G	G
80-89	G#	G#
90-98	А	G#
99-108	A#	В
109-118	В	В
119-127	С	C

表の通り、値が10から11になると半音階では音程が変わりますが、ハーモニックマイナースケールでは 変化していません。これがクォンタイズした結果で、特定の値の範囲では次に出力できる値になるまで何 も変化しないようにできます。これはLFOやその他をモジュレーションソースにした場合も同様です:つ まり、値の0-127の間で均等に変化しなくなることがクォンタイズモジュレーションでは起こります。

モジュレーションルーティングの設定 [p.140]方法も併せてご参照ください。

♪: クォンタイズモジュレーション機能はソースが選択したエンジンのコースチューニング・パラメーターにルー ティングされた場合のモジュレーション出力に対してのみ効果がかかります。オフにしたノートのMIDIノートを受信 しなくさせる機能ではありません。 チューニングの微調整をします (0.008:半音の8/1000単位)。上下半音の範囲で微調整できます。

📲 ♪: Ctrlキーまたは右クリックしながらFineノブを回すとさらに細かい0.001単位でチューニングできます。

5.1.4.4. Key Track

キートラックがオンの場合、エンジンの音程はキーボードに沿って変化します。キートラックがオフの場合は、キーボードで弾いた音程に関係なくC3の音程で発音します。この場合、音程を変化させることができるのは、CoarseとFineパラメーターのみとなります。

5.1.4.5. Drift (アナログエンジンのみ)

Driftノブは、ノートを発音するたびに発生するチューニングや位相のバラつき量を調節します。設定次第 で微妙な変化から完全に予測不能な状態までできます。この機能をオフにしてバラつきのないチューニン グや位相で発音させることもできます。

5.1.4.6. Filter (サンプルエンジンのみ)

Filterノブでローパス/ハイパスフィルターをコントロールできます。デフォルト設定 (時計の12時の位置) では、全帯域をスルーして、サンプルエンジンからの音を変化させません。ノブを時計回りに回していく と、ハイパスフィルターが徐々にかかっていき、ノブを反時計回りに回していくとローパスフィルターが 徐々にかかっていきます。サンプル音の明るさ調節に便利です。

5.1.5. ユニゾンモード

ユニゾンモードは、1つのMIDIノートデータで最大8ボイスを同時にトリガーできる機能です。この時、 各ボイスのピッチを互いにデチューンさせたり、ステレオ間の広がりを調節することができます。

┃ ♪: Unison Voiceの設定値を高くすると、Pigmentsがより多くのCPUパワーを消費します。

ユニゾンモードにはClassic, Chord, Superの3モードがあります。ユニゾンのパラメーターボックス内の メニューをクリックし、3モードから1つを選択できます:

5.1.5.1. Classicモード

このモードは、すべてのユニゾンボイスが1つの音程に集まって、デチューンを上げていくと各ボイスの ピッチが音程の上下にズレていく、かつてのアナログのポリフォニックシンセサイザーでよく見られた ユニゾンデチューンモードです。Pigmentsでは、もう少し違うこともできます。

UNIS	SON
Classic 🔻	2.00
Mode	Voices
(
Detune	Stereo

Voices

1つのMIDIノートに対して同時にトリガーさせるボイス数(最大8ボイス)を選択できます。

• Detune

各ユニゾンボイス間のピッチのズレをセント単位で調節します (最大±6半音)。ボイスが増えた場合は、 両端の設定値の中間に挟み込まれます。

Voicesパラメーターの値が偶数 (2,4,6,8) の場合、全ユニゾンボイスはセンターピッチの上下に配置されます。Voicesの値が奇数 (3,5,7) の場合は、ユニゾンボイスの1つはセンターピッチに留まり、その他のボイスがその上下のピッチに配置されます。

Stereo

値を上げていくとユニゾンボイスの定位が左右に広がっていきます。ユニゾンボイスが増えた場合は、設 定値の両端の中間に挟み込まれます。

5.1.5.2. Chordモード

このモードでは、ユニゾンボイスのピッチは12種類から選択できるコードシェイプに沿って半音単位で クォンタイズされます。ユニゾンボイスの数が増えるとよりリッチなコードになります。

UNISON	
Chord 🔹	$\overline{}$
Mode	Voices
	sus2
Chord	Stereo

Voices

1つのMIDIノートで同時にトリガーされるユニゾンボイス数を選択します。最大8ボイスまで設定できます。

Chord

12種類のコードシェイプから1つを選択します。

Unison Voiceの値が増えるにつれ、より多くのユニゾンボイスがルートピッチより上に増えていきます。 複雑なコードほどすべての構成音を発音させるためには、より多くのボイスが必要になります。例えば、 5度とオクターブのコードでは2ボイスだけで全構成音を発音できます(お好みでそれ以上のボイス数に設 定することもできます)。一方、6/9コードの全構成音を発音させるには最低4ボイスが必要になります(こ れもお好みでそれより少ないボイス数に設定することもできます)。

Stereo

値を上げていくとユニゾンボイスの定位が左右に広がっていきます。ボイス数が増えた場合は、左右両端 の中間のスペースに挟み込まれます。

♪: ユニゾンボイスも各種の波形加工やモジュレーション機能 (ウェーブフォールディング、フェイズディストーション等) による影響を等しく受けます。

このモードは、有名な "JP" SuperSawスタイルでオシレーターの音を太くできるモードです。

UNISON		
	Super 🔻	
	Mode	Mix
	Detune	Stereo

• Mix

ユニゾンボイスのミックスを調節します。

Detune

各ユニゾンボイス間のピッチのズレをセント単位で調節でき、センターピッチに対して最大±6半音の範 囲で調節できます。ボイス数が増えた場合は、両端のピッチの中間のスペースに挟み込まれます。

Stereo

値を上げていくとユニゾンボイスの定位が左右に広がっていきます。ボイス数が増えた場合は、左右両端 の中間のスペースに挟み込まれます。

5.2. アナログエンジン

Arturia独自のノウハウがあるとすれば、それはあらゆる時代のアナログシンセサイザーの名機の特徴や 挙動をエミュレーションできることだろうと思います。Pigmentsのアナログエンジンはそうした機能を 引き継ぎ、それらが1つのインストゥルメントに集約されているのです。

5.2.1. アナログエンジンチューニング

コース/ファインチューニングを変更すると3つのオシレーターのチューニングがすべて同時に変更されま す。詳しくは「各エンジンで共通の機能」のエンジンチューン [p.45]をご覧ください。

5.2.2. アナログユニゾンモード

ユニゾンモードは、1つのMIDIノートに対して最大8ボイスを同時にトリガーできる機能です。各ユニゾ ンボイスのピッチや左右の定位はそれぞれ調節することができます。詳細は「各エンジンで共通の機能」 のユニゾンモード [p.48]をご覧ください。

5.2.3. オシレーター

アナログエンジンはアナログシンセサイザーの名機と同様の3オシレーター設計になっています。通例の ごとく、各オシレーターの機能の多くは同じですが、多少の違いもあります。まずはオシレーター1をご 紹介し、それからオシレーター2と3を一緒にご紹介します。

5.2.3.1. オシレーター1

コントロール	内容
Sync	オシレーター2の波形サイクルをオシレーター1の周波数にハードシンクさせ、面白い音色変化を生成
FM	モジュレーションセクションからオシレーター1にフリケンシーモジュレーション (FM) をかけます。
Coarse Tune	オシレーター1のチューニングだけを半音単位で調節
Waveform	サイン波、三角波、ノコギリ波、矩形波をボタンで選択。ウィンドウはオシロスコープになっています。
Width	特定波形のパルス幅調節 (三角波と矩形波のみ)
Volume	他のオシレーターに対するオシレーター1の相対的な音量調節

5.2.3.2. オシレーター2

コントロール	内容
Key	オシレーターがMIDIノートナンバーに追従する/しない (モジュレーションがかかっていない場合) を選択
FM	モジュレーションセクションからオシレーター2にフリケンシーモジュレーション (FM) をかけます。
Coarse Tune	オシレーター2のチューニングだけを半音単位で調節
Fine Tune	オシレーター2のチューニングだけを微調整
Waveform	サイン波、三角波、ノコギリ波、矩形波をボタンで選択。ウィンドウはオシロスコープになっています。
Width	特定波形のパルス幅調節 (三角波と矩形波のみ)
Volume	他のオシレーターに対するオシレーター2の相対的な音量調節

5.2.3.3. オシレーター3

コントロール	内容
Key	オシレーターがMIDIノートナンバーに追従する/しない (モジュレーションがかかっていない場合) を選択
Coarse Tune	オシレーター3のチューニングだけを半音単位で調節
Fine Tune	オシレーター3のチューニングだけを微調整
Waveform	サイン波、三角波、ノコギリ波、矩形波をボタンで選択。ウィンドウはオシロスコープになっています。
Width	特定波形のパルス幅調節 (三角波と矩形波のみ)
Volume	他のオシレーターに対するオシレーター3の相対的な音量調節

5.2.4. アナログ・アウトプットセクション

5.2.4.1. Analog Filter Mix

このパラメーターでアナログエンジンの出力先をフィルター1またはフィルター2あるいはその両方のミ ックスにするかを設定できます。反時計回り(左)いっぱいに回し切った状態で、エンジンからの出力はフ ィルター1に入ります。逆に時計回り(右)いっぱいに回し切った状態でフィルター2に入ります。しかしマ スターとなるフィルタールーティング [p.95]パラメーターでの設定がこのパラメーターにも影響します。 例えばフィルタールーティングでフィルター1と2が完全にシリーズ接続に設定されている場合、フィル ター1からの出力がある程度フィルター2を通過します。

5.2.4.2. Analog Output Volume

このノブで3つのオシレーターとノイズソースの音量を調節します。2つのエンジンを使用している場合 は、他方のエンジンとの相対的な音量バランスの調節にも使用できます。

5.2.5. ノイズセクション

ノイズソースは音作りの色々な場面で便利です。モジュレーションの設定にもよりますが、パッドの "ブレス感"を出したり、ベースにグリッティなキャラクター付けをしたり、音色のアタック部分にちょっとしたアクセントを付けるのにもノイズは便利です。

5.2.5.1. 色彩豊かなソースパラメーター

Pigmentsのノイズソースは非常にフレキシブルで、ローパスフィルターを通したレッドから、フィルターを通していないホワイトやハイパスフィルターを通したブルーまで、ノイズの"カラー"を自由に調節できます。このSourceパラメーターでノイズの色調を細かく調節できます。

5.2.5.2. Noise Volume

アナログエンジンの出力にノイズを少しブレンドしたい場合はノイズのVolumeノブを少し上げます。ノ イズボリュームも好きなパラメーター (複数使用可能) でモジュレーションすることができます。

5.2.6. モジュレーション

ここのモジュレーションパラメーターはオシレーター1と2のみにかかります。Sourceノブでオシレータ ー3とノイズソースを自在にブレンドできます。

5.2.6.1. Modulation Amount

オシレーター1と2にかかるモジュレーション量をAmountノブで調節します。モジュレーション量が増大 すればそれだけ過剰なモジュレーションになります。

5.2.6.2. Modulation Source

Sourceノブを左いっぱいに回し切った状態でオシレーター3のみがモジュレーションソースになります。 この場合、オシレーター3の周波数はキートラッキングやコース/ファインチューニングの設定にもよりま すが、1Hzから20kHzの範囲で可変します。

Sourceノブを右いっぱいに回し切った状態でノイズのみがモジュレーションソースになります。この場合ノイズセクションのSourceノブの設定によりモジュレーションの様子が変わります。"ブルー"ノイズの場合ほとんど高音域のみのモジュレーションになりますし、"レッド"ノイズでは低音域に集中したモジュレーションになります。

♪: エンジンタイプはエンジンタブごとに設定できますので、アナログエンジンを2つ使用したり、ウェーブテーブ ルエンジンを2つ使用したり、アナログとウェーブテーブルを1つずつ使用することもできます。

5.3. ウェーブテーブルエンジン

Arturiaのノウハウは既存の楽器のエミュレーションだけでなく、当時不可能だった様々な機能強化を現 代のテクノロジーで実現する点にも活きています。これはどのArturia Vインストゥルメントを見ても分か ることですし、Arturia最新のウェーブテーブルエンジンにもそれが活きています。

ウェーブテーブルシンセシスは、通常のオシレーターでは不可能な多くの機能があります:

- 各ウェーブテーブルに最大256カ所のポジションがあります
- 各ポジションは2048サンプル分波形をホールドします
- 同期可能なLFOなど、あらゆるモジュレーションソースでウェーブテーブル内の波形を選択 できます
- 波形間の遷移はステップ状またはモーフィングに設定できます

Pigmentsはオリジナルウェーブテーブルのロード [p.56]も可能ですので可能性は無限大です。ロード可能なウェーブテーブルの仕様につきましては、上記リンク以降をご参照ください。

5.3.1. ウェーブテーブル選択メニュー

ウェーブテーブルの選択には3種類の方法があります。どの方法もウェーブテーブルネームフィールド周 辺での操作になります。

- ウェーブテーブル名の右にある左右の矢印ボタンで1つ前/後のウェーブテーブルを選択します。その時に選択しているウェーブテーブルのバンクの最初または最後のウェーブテーブルを選択している状態で矢印ボタンをクリックすると、その前/後のウェーブテーブルバンクに移動します。
- ウェーブテーブル名をクリックしてウェーブテーブルブラウザを使用してファクトリーウェ ーブテーブルを選択します。選択中のウェーブテーブルはハイライト表示されます。
- ウェーブテーブルブラウザでファクトリー以外のウェーブテーブルをインポート [p.56]しま す。

5.3.2. ウェーブテーブルブラウザ

ウェーブテーブルビューワー [p.59]内のウェーブテーブル名をクリックするとウェーブテーブルブラウザ が表示されます。

III\ Additive Twin	< ►	► 4^ ×
left Building Waves	Basic Waveforms	
Natural	2 Sine Sweeps	
	Additive Thin	
	Additive Twin	
Synthesizers	Additive int 1	I
Transform Transfor	Additive int 2	
	Additive int 4	

5.3.2.1. ウェーブテーブルの選択

ウェーブテーブルブラウザの左側のコラムにはウェーブテーブルバンクが表示されます。ファクトリーバ ンクにはArturiaロゴが付いていて、これらのバンクは削除できません。

バンクを選択するとその中のウェーブテーブルがリスト表示されスクロールして内容を見ることができます。ウェーブテーブルの選択には2種類の方法があります:

- ウェーブテーブルを1回クリックする方法:この場合ブラウザは閉じませんのでウェーブテ ーブルをオーディションしながら選択できます。
- 使用したいウェーブテーブルが見つかりましたらそれをダブルクリックして選択します。この時、ブラウザが閉じます。

バンクを切り替えて上記の方法でウェーブテーブルをオーディションしたり選択することも可能です。

ブラウザを閉じるには"X"をクリックします。

単体のウェーブテーブルやウェーブテーブルのバンク全体をインポート [p.56]することもできます。

5.3.2.2. モーフィング

ウェーブテーブルMorphボタン

モーフィング機能がオンの場合、ウェーブテーブルのポジション間をスムーズに遷移します。オフの場合 は瞬時にポジションが切り替わります。この機能のオン/オフで、ウェーブテーブル上でカーソル移動さ せたり、Positionパラメーターにモジュレーションソース [p.140]でモジュレーションをかけた場合のウ ェーブテーブルの挙動が変わります。

モーフィング機能のオン/オフはMorphボタンで切り替えます。ボタンの外周がブルーに点灯している状態でオンになります。

オリジナルのウェーブテーブルのロード方法にはバンク全体と単体のウェーブテーブルのロードという2 種類の方法があります。どちらの方法でも、ウェーブテーブル名をクリックしてウェーブテーブルブラウ ザを開きます。

バンク全体をロードする

オリジナルのウェーブテーブルが入ったフォルダ全体をロードするには、ウェーブテーブルブラウザに あるフォルダアイコンをクリックします。

III\ Basic Waveforms	< >	■ 4 ^k ×
Building Waves	Basic Waveforms	

ウェーブテーブルのバンクインポートボタン

ウェーブテーブルの入ったフォルダがインポート (ロード) されるとそのバンクはバンクリストの最下部 (ファクトリー、Importedの下) に表示されます。

III\ Basic Waveforms	< >	•	
Building Waves	Hit_Hurt3		
🛞 Natural	Jump2		
Processed	Jump3		
Synthesizers Synthesizers	Laser_Shoot		
 Transform 	Laser_Shoot4		
	Powerup Powerup?		
Imported	Randomize		
My wavetables	Randomize2		
	Randomize3		

ウェーブテーブル単体をロードする

単体のウェーブテーブルやサンプル (WAVファイル) をインポートするには、最初にファクトリー以外の ウェーブテーブルバンク (ユーザーバンク)を選択する必要があります。そうでないとウェーブテーブルの ロードボタンが使用できません。

III\ Basic Waveforms	< ►	■ <u></u>
Building Waves	16yah	
Natural	671	
Processed	Default	
	chroma21	
Synthesizers	classic6	
A Transform	demonbass2	
Imported		

ユーザーバンクを選択してからインポートボタン (赤丸

インポートボタンをクリックして、インポートしたいウェーブテーブルまたはサンプルが入っているフォ ルダを指定します。ウェーブテーブルまたはサンプルをインポートするとそれが選択したバンク内のリス トに表示されます。 ウェーブテーブルを追加するバンクはImportedバンクの他にオリジナルのバンクも選択できます。追加 するバンクを先に選択してからインポートボタンをクリックしてください。

♪: プロジェクトごとやソースごとに分けて複数のウェーブテーブルをインポートする場合は、ウェーブテーブル バンクインボートボタンで空のフォルダを作成し、お使いのコンピュータのOSで新規フォルダを作成することも可能 です。その後に必要なウェーブテーブルをウェーブテーブルインボートボタンで1つずつ追加することもできます。

5.3.2.4. オリジナルウェーブテーブルの要件

オリジナルのウェーブテーブルを使用する場合、Pigmentsの性能をフルに引き出すためのガイドライン があります:

- 2048サンプル分の単波形 (ポジション)を含むこと
- ・ ポジションは最大256カ所以内にすること

通常の.wavファイルをロードしてウェーブテーブルとして解析させることもできます。この場合、.wav ファイルの先頭から2048サンプルまでをポジション1と見なし、次の2048サンプルまでをポジション2と いうように、256ポジションまでポジションを設定します。そのため、Pigmentsで使用できるのは先頭か ら524,288サンプルまで (256x2048=524288) となります。

524,288サンプルよりも短いサンプルもインポートできます。その場合、一例として次のようなことが起こります。

■ bas040_sub-bass Morph 20 30

以下の図は10,240サンプルまでのサンプルファイルです。

このサンプルでは、2048サンプルごとに5つ(10240/2048=5)のポジションに分割されます。

このように短いサンプルでも問題ありません。例えばLFOでポジション1から3を往復するようにモジュレーションをかけると下図のようになります:

ウェーブテーブルの各ポジション間をモーフィングさせたり、ポジションを順番に読み出したり、ポジション間をスイッチ的にジャンプさせたりすることがMorphボタンとその設定でできます。また、ポジション間の遷移をモジュレーションソースでコントロールすることも可能です。

モジュレーションルーティングの設定 [p.140]方法もご参照ください。

▶: 256フレーム (ボジション) のウェーブテーブルは正確に524,288サンプルの長さです。Audacityなど一部のオー ディオエディターソフトではファイル内のサンプル数を表示できるものがあります。そのようなツールを使用すれ ば、長いサンプルでのポジション作成やウェーブテーブルの端から端まで無駄なくポジションを並べる作業に便利で す。

5.3.2.5. ウェーブテーブルバンクの削除

!: 以下の操作はアンドゥが困難で、正しくロードできないか、全くロードできないプリセットが発生するおそれが ありますので十分にご注意ください。

ウェーブテーブルのバンクを削除したい場合、バンク名にマウスオーバーすると表示される"X"をクリックします。この時、誤削除を防止する確認ウィンドウが表示されます。

A	Transform		
Imp	orted		
My	wavetables	Х	

5.3.2.6. ウェーブテーブル単体の削除

```
!: 以下の操作はアンドゥが困難で、正しくロードできないか、全くロードできないプリセットが発生するおそれがありますので十分にご注意ください。
```

単体のウェーブテーブルを削除したい場合、ウェーブテーブル名にマウスオーバーすると表示される"X"をクリックします。この時、誤って削除してしまうのを防止する確認ウィンドウが表示されます。

Imported	Rusty Strings	
	Wooden Shoe	
My wavetables		

Pigments上から削除したウェーブテーブルやそのフォルダ (バンク) がコンピュータ内に残っている場 合、削除を取り消すことができます。これは、インポート動作がコンピュータ内のウェーブテーブルなど のアイテムをPigmentsが指定するフォルダにコピーするためです。

例えばプリセットをロードした時に次のようなメッセージが表示されたとします:

Missing Samples	
/Library/Arturia/Samples/Pigments/User/My wavetables/73EP_37_04.wav	Locate
	Ignore

このような場合はLocateボタンをクリックして復旧したいウェーブテーブルやフォルダを指定します。削除したウェーブテーブルなどのロード後は、必ずプリセットをセーブしてください。そうすることでそのプリセットは以後正しくロードされます。

またはIgnoreボタンをクリックしてこの時のロード操作をスキップすることも可能です。この場合プリセットはそのままロードされ、必要に応じて代わりのウェーブテーブルやサンプルを指定できます。この場合もその後にプリセットをセーブしておくことをお勧めします。そうでないと、同じプリセットをロードした時にまた同じエラーメッセージが出てしまいます。

5.3.3. オシロスコープ/ウェーブテーブルビューワー

ウェーブテーブルエンジンではウェーブテーブルを2次元または3次元 (2Dまたは3D [p.59]) で表示するウィンドウがあります。ウェーブテーブルのポジション間遷移はMorphボタンのオン/オフでスムーズになったりステップ状になったりします。

ウェーブテーブルビューワー内をドラッグするとウェーブテーブルのポジション間を移動できます。 Positionノブでも同じ操作を行えます。但しウェーブテーブルによっては、モーフィングがオフでビュー ワーを3Dにしている場合に何が起きているのかが見づらいものもあります。

5.3.3.1.2D/3Dビュー

ウェーブテーブルビューワーの右上コーナーに波形表示を2Dと3Dを切り替える小さなボタンがありま す。それぞれの表示で特徴が異なりますので、音作りの際に有利な表示に適宜切り替えてご使用くださ い。

2Dビューにできて3Dビューではできないものに、フェイズモジュレーションやフェイズディストーション、ウェーブフォールディングなどの波形加工を使用した際の波形表示があります。これらの機能を使ったプリセットでは音色の変化と同時に波形の変化も視覚的に楽しめます。

しかし一方で、2Dビューでは一度に1つの波形 (ポジション) しか表示できません。ウェーブテーブル内の 各波形を見たい場合は3Dビューに切り替えます。Positionパラメーターを使用する際は3Dビューのほう が合理的です。

3Dビューの場合、グレーで表示された各波形がウェーブテーブルのポジションです。ブルーにハイライトされた波形はモーフィング時を含めてその時に使用しているポジションです。

5.3.4. ウェーブテーブルエンジンのチューニング

TUNEセクションの各パラメーターでウェーブテーブルエンジンの全体的なチューニングをします。この セクションの一般的な機能につきましては、エンジンチューン [p.45]をご覧ください。

5.3.5. ウェーブテーブルのユニゾンモード

ユニゾンモードを使用すると1つのMIDIノートに対して最大で8つのウェーブテーブルボイスを発音しま す。各ボイスはDetuneパラメーターで互いにデチューンでき、StereoパラメーターでステレオのLR間に 広げて定位させることができます。詳細は「各エンジンで共通の機能」のユニゾンモード [p.48]をご覧く ださい。

5.3.6. フリケンシーモジュレーション (FREQ MOD: FM)

ウェーブテーブルエンジンのFMはモジュラーのアナログシンセサイザーで見られるのと同様のタイプで、リニアとエクスポネンシャルの2タイプがあります。用途に応じて使い分けることができます。

FM機能は波形表示画面の左下にあります。機能の詳細につきましてはウェーブテーブルモジュレーター [p.67]をご覧ください。

5.3.6.1. FM Type

FMタイプの選択は、ネームフィールドをクリックしてメニューを開くか、タイプ名のところにある矢印をクリックします。

	FREQ	MOD	Pł
)	Line	ar 🔻	
es	FM TYPE S		
		⊔ Exponential	

5.3.6.2. FM Mod

このノブを上げていくとウェーブテーブルモジュレーター [p.67]によるモジュレーションが深くなってい きます。

5.3.7. フェイズモジュレーション (PHASE MOD: PM)

フェイズモジュレーション (PM) はFMシンセシスと形態は似ていますが、次のような違いがあります:

- アルゴリズムは2個のオペレータが直列につながった1タイプのみ
- キャリア波形にはオリジナルのウェーブテーブルをインポート [p.56]できるため、ほとんど どんな波形でも使用できます
- モジュレーターには多くの波形オプション [p.68]があります

ソースとターゲット波形の選択によっては、Arturia DX 7 VやSynclavier Vのシンセシスとよく似た音色に なることもあります。

5.3.7.1. PMは何をするのか?

ソース波形の位相がターゲット波形の振幅によって変調されます。ソース波形の振幅と周波数のピークは そのまま維持されますが、ターゲット波形の振幅が変化すると、それに応じてソース波形の位相と倍音構 成が変化します。

5.3.7.2. Sync/Retrig

このパラメーターでウェーブテーブルの位相をリセットするソースを選択します。ソースの選択は、ネームフィールドをクリックしてメニューを開くか、ソース名の近くにある矢印をクリックします。

リセットオプショ ン	内容
Key	受信したMIDIノートでウェーブテーブルの位相がリセットされます
Mod Osc	ウェーブテーブルモジュレーターの位相が0にリセットするたびにウェーブテーブルの位相がリセット されます
Self	メインのコース/ファインチューンパラメーターの設定に従ってウェーブテーブルの位相がリセットさ れます
Random	受信したMIDIノートでウェーブテーブルの位相がランダムにリセットされます

5.3.7.3. PM Mod

このノブを上げていくとウェーブテーブルモジュレーター [p.67]によるモジュレーションが深くなってい きます。

5.3.8. フェイズディストーション (PD)

フェイズディストーション(PD) は6種類から選択したモジュレーター波形 (ターゲットと呼びます) の形に 応じてソース波形を変形させる手法です。但しこれはソース波形がターゲットの形に近づいていくのでは なく、ターゲットの形に応じてソース波形自体が面白い形にねじ曲がっていくイメージで捉えてください。

PDがソース波形に対して行うことをイメージしやすくするために、次の2つの喩えを用意してみました:

- 遊園地などにあるようなぐにゃぐにゃの鏡の部屋をイメージしてください:その中に入ると 色々な形にねじ曲がった自分の姿が見えます。
- 重力レンズという天文的な発想もイメージできます。銀河からの光がブラックホールの重力場に差し掛かった状態を観測した場合です。光自体は元の光そのものですが、巨大な重力によって見え方が大きく変化します。

上の喩え2つは完璧とは言えませんが、PDがウェーブテーブルの音をどのように変形させるかの一端は垣 間見えたのではないかと思います。

5.3.8.1. PDは何をするのか?

技術的に言えばターゲット波形の振幅でソース波形の位相位置を制御しているということになります。別 の言い方をすればAmountパラメーターを上げていくとソース波形の振幅位置が時間的にシフトしていき ます。その結果、波形の'ねじ曲がり'は波形の見た目と音に表れます。各ターゲット波形は単波形で、モ ジュレーション (波形のねじ曲げ) は元のソース波形の1周期内ですべて発生します。これにより元のピッ チは変化せず、音色だけが変化します。

パルス幅50%の矩形波はフェイズディストーションが発生する条件の組み合わせの中ではレアケースに 入ります。その理由は極めてシンプルです:矩形波にはどの位相位置にも最大か最小の振幅しか存在しな いため、プラスかマイナスの位相位置の範囲内では振幅が変化せず、フェイズディストーションがほとん ど発生しません。シンプルなターゲット波形を使用した場合に変調感が分かるのは、矩形波の位相が変 わるほとんど一瞬のスロープ部分だけどなります。より複雑なターゲット波形を使用すれば矩形波のパル ス幅の中でより多くの音色変化が発生します。

例えばターゲット1の場合、音色変化はAmountパラメーターの60%付近から発生しますが、モジュレー ションはパラメーターの可動範囲の最後10-15%でしか発生しません。ターゲット3-6ではその結果がより 劇的に分かりますが、ターゲット2では変化がほとんど起こりません。

5.3.8.2. PD Amount

このパラメーターでウェーブテーブルにかかるフェイズディストーション(PD) の量を調節します。動作の理解のために、以下の操作例をやってみてください:

- 1. ウェーブテーブルエンジンに入っている基本波形のみで構成されたデフォルトのプリセット を選びます
- 2. 波形ディスプレイの上にあるMorphボタンをオフにします
- 3. PDのターゲットが1になっていることを確認します
- 4. ウェーブテーブルのポジションを最初のサイン波にセットします
- 5. キーボード等で1音を押さえながらPD Amountを少しずつ上げていきます。倍音が徐々に出 てきて、サイン波の振幅のピークが左右両方に寄って行きます
- 6. ターゲットを1以外にセットして同じサイン波に同様の実験をします。同じ波形でもターゲットの違いにより変化の仕方が違うことが分かります
- 7. ターゲットを1に戻してPD Amountを最大にします
- ウェーブテーブルのポジションを2つ目に切り替えて上記の実験をします。同様に3つ目、4 つ目でも同じように実験します。三角波、ノコギリ波、矩形波とソース波形の違いで音の変 化も異なることが分かります
- ウェーブテーブルのポジションを2つ目にセットしてPD Amountノブを回して最小から最大 にスウィープします。同様の実験を3つ目、4つ目のポジションでも行って各波形の見た目と 音の変化を確認してみてください
- 10. 今度はより複雑なウェーブテーブルで同様に実験します。ウェーブテーブルとターゲットの 組み合わせで多彩な音の変化が得られることが分かります

5.3.8.3. PD Target

各ターゲットのカーブはサイン波にかけた場合の形ですのでより複雑な波形にかけた場合は必ずしもこのような形になるとは限りません。しかし、各ターゲットには次のような傾向があります:

ターゲッ ト	名称	内容
1	Skew	ほとんどの波形で使用できます:振幅のピークが左右両方に寄りセンター部分には谷間が広が ります
2	Round	階段状に45度の変化が起こります
3	Tri/Pulse	波形の中央部分をつまんで左側へ引き伸ばします
4	Octave Plus	ソース波形の一部が右側へ圧縮されて特定の倍音が強調されます
5	Pseudo PW	波形全体を左へ引き伸ばして右側にギャップを作ります
6	Fractalize	波形全体を大小最大8つにコピーします

5.3.8.4. PD Mod

ウェーブテーブルモジュレーター [p.67]からのモジュレーション量を調節します。

5.3.9. ウェーブフォールディング

ArturiaのBruteシンセサイザーを使ったことがある方ならウェーブフォールディングのコンセプトについ てはマニュアル等でお馴染みかも知れません。しかしBruteシリーズでは元の波形をそのまま折り返して いたのに対し、Pigmentsでは選択式の波形で元のウェーブテーブルのピークへ下方向に"折り畳む"こと でさらに複雑でユニークな波形を作り出します。

5.3.9.1. Wavefolding Amount

このパラメーターでウェーブテーブルにかけるウェーブフォールディングの量を調節します。動作の理解 のために、以下の操作例をやってみてください:

- ウェーブテーブルエンジンに入っている基本波形のみで構成されたデフォルトのプリセット を選びます
- 波形ディスプレイの上にあるMorphボタンをオフにします
- ウェーブテーブルのポジションを3つ目のノコギリ波にセットします
- キーボード等で1音を押さえながらAmountを少しずつ上げていきます。ノコギリ波の倍音が 倍音列に沿ってスウィープしていきます
- Shapeを変えて同じ実験をします。同様のスウィープが発生しますが音はかなり違います
- より複雑なウェーブテーブルを選んで同じ実験を繰り返します。ウェーブテーブルとShapeの組み合わせで多彩な音の変化が得られることが分かります

5.3.9.2. Wavefolding Shape

Shapeのネームフィールドをクリックするとドロップダウンメニューが開いてシェイプの変更ができま す。または、ネームのどちらかの側にある左右の矢印をクリックします。

5.3.9.3. Wavefolding Mod

ウェーブテーブルモジュレーター [p.67]からのモジュレーション量を調節します。

5.3.10. ウェーブテーブル・アウトプットセクション

5.3.10.1. Wavetable Filter mix

OUTPUTセクションにあるFilter Mixパラメーターでウェーブテーブルの出力先をフィルター1または2、 あるいは両方のミックスに設定します。ノブを左いっぱいに回し切った状態でフィルター1に、右に回し 切った状態でフィルター2に送られます。

5.3.10.2. Wavetable Output Volume

OUTPUTセクションのVolumeパラメーターでウェーブテーブルとモジュレーター (追加オシレーターとして使用している場合)のボリュームを調節します。2つのエンジンを使用している場合は、他方のエンジンとの相対的な音量バランスの調節にも使用できます。

5.3.11. ウェーブテーブル・セクション

このセクションではウェーブテーブルのスターティングポイント (ポジション) とボリュームを設定しま す。

ウェーブテーブルの選択方法は選択メニュー [p.54]をご覧ください。左右の矢印ボタン [p.54]で選択する 方法と、ウェーブテーブルブラウザ [p.55]を使用する方法があります。

5.3.11.1. Wavetable Position

WAVETABLEセクションのPositionパラメーターでウェーブテーブルのスタートポジションを選択しま す。波形表示を2Dや3D [p.55]に適宜切り替えると各ポジションの波形が見やすくて便利です。3D表示の 場合はブルーのラインが元のポジションでグリーンのラインはモーフィング中のポジションも含めた発 音中のポジションを表示します。

5.3.11.2. Wavetable Volume

Volumeパラメーターでウェーブテーブルの出力レベルを調節します。

5.3.12. ウェーブテーブル・モジュレーター

MODULATORセクションはウェーブテーブルエンジンの各種波形加工にあるModパラメーターへのモジ ュレーションソースとして機能します。このセクションはダイレクトアウトも可能ですので、ウェーブテ ーブルのセカンドオシレーターやノイズソースとしても使用できます。

】 ♪: モジュレーターの波形はウェーブテーブルのModパラメーターを上げても変化しません。これはモジュレータ ーの波形でウェーブテーブルの波形加工機能にモジュレーションをかけているためで、モジュレーターの波形を変化 させるためではないからです。

5.3.12.1. Modulator Tuning

モジュレーターのコースチューニング・パラメーターでモジュレーター波形の中心ピッチを半音単位で 設定します。矢印ボタンで3種類のチューニングモードから1つを選びます:

チューニング モード	内容
Relative	ウェーブテーブルのチューニングに対して半音単位でオフセット (最大土3オクターブ)
Absolute	ウェーブテーブルから独立したチューニングを半音単位で設定 (最大±3オクターブ)。ノートナンバーやピ ッチベンド、グライド設定に追従します。
Hertz (Hz)	ウェーブテーブルから独立したチューニングをヘルツ単位で設定 (20.0-3,000Hz)。ノートナンバーやピッチ ベンド、グライド設定に追従しません。

5.3.12.2. Modulator Fine tune

モジュレーターのピッチを上下半音の範囲で微調整します。

♪: Ctrlキーや右クリックをしながらFineノブを回すとさらに細かく微調整できます。

5.3.12.3. Modulator Volume

Volumeノブを上げるとモジュレーターのダイレクトアウトの音量が上がってウェーブテーブルの音とミックスされます。
5.3.12.4. Modulator Wave

モジュレーターには10種類の波形があります。このうち5種類はシンプルな波形で、残りの5種類は色々な"カラー"のノイズソースです。

波形	内容
Sine	定番のサイン波モジュレーションソースです
Triangle	サイン波と似ていますが上下の動きが直線で頂点の瞬間が一瞬しかない波形です
Sawtooth	プラス方向から下がっていく波形です
Ramp	ノコギリ波とは逆にマイナス方向から上がっていく波形です
Square	周期の半分をプラスの最大、残りの半分をマイナスの最大をとる波形です
Blue Noise	ランダムノイズにハイパスフィルターをかけた波形です
White Noise	フィルターがかかっていない、全帯域成分を含んだノイズです
Pink Noise	ランダムノイズにローパスフィルターをかけた波形です
Red Noise	ローパスフィルターをさらにきつくかけたランダムノイズです
Rumble	ノイズの最低帯域のみを抽出した波形です

5.4. サンプルエンジン

ENGINE 1 🖻	Sample 🔹	O ENGINE	2 🗋 Wavetable	٠ ٺ
TUNE Coarse	III\ A: Hull Breach	 ↓ 1.50 1.75 2 	Main Edit 225 250 275 3	Map <u>1</u> 25 FI FI FI FI FI FI FI FI FI SAMPLE/GRAIN
Fine Filter	ананананананананананананананананананан		in for the second s	Start Volume
		GRANULAR 😃	\bigcirc	MODULATOR
Decimate Bit Depth	Dens:↓▼ Density: Sync	• Gauss. •	Size: Sync.d ▼ Size: → ▼	Tune: Abs • Volume
Key Track	BW FW FW FW FW Fitch: 1↓ * Start: ≠ *	C Shape	256 (Limit Width • Vo	Sine Sine Fine Wave

Arturiaには高品位のサンプルベースのインストゥルメント開発の長い歴史があります。そこで培われた ノウハウのすべてをPigmentsのサンプルエンジンに注ぎ込みました。このエンジンにはサンプルを楽し く、しかも音楽的に面白い方法で操作できるあらゆる機能が入っています。開発チームとしては、このエ ンジンを以前からよくあるサンプルプレイバックにしておこうなどとは思っていませんで、このエンジン にグラニュラーシンセシスも搭載して、分かりやすいコントロール系を保ちながら、極めて面白いグラニ ュラーなテクスチャーサウンドを作れるように開発しました。ではその世界へ飛び込んでみましょう!

5.4.1.1エンジンで6個のサンプル

サンプルエンジンでは、1エンジンで使用できるサンプルのスロットが6個 (A-F) あります。各スロットは 波形ディスプレイの下のプリビューウィンドウに表示されます。空のスロットにサンプルを追加したり、 既にサンプルが入っているスロットに新たなサンプルをロードするには、サンプルビューワー [p.71]の底 部にあるプリビューウィンドウをクリックします。次に、このあと2つのセクションでご紹介します方法 でサンプルを選択します。

5.4.2. サンプルの選択

サンプルのロード方法には次の3つがあります:

- サンプル名の右にある左右の矢印ボタンでサンプルを順番に切り替えます。サンプルのバン クの先頭や最後のサンプルに到達した状態で矢印ボタンをクリックすると、そのバンクの前 または後のバンクに切り替ります。
- サンプル名をクリックして、サンプルブラウザでファクトリーのサンプルバンクからサンプ ルを選択します。選択しているアイテムはハイライト表示になります。
- 3. サンプルブラウザを使って、ファクトリー以外のサンプルをインポートします。

上記3つの方法はモードボタン (波形ディスプレイの右上) がMain, Edit, Mapのどのモードに入っていても 使用できます。

5.4.3. サンプルブラウザ

サンプルビューワーのサンプル名をクリックすると、サンプルブラウザが開きます。

III\ A: FM Random 1	▲ ▶ @	• 44 ×
le Noise	Accoustic Guitar Harmonics	
Victor V1	Bass Hard Noise	
	Drowned Marimba	
Imported	Drum Loop	
	FM Random 1	
	FM Random 2	
	Pad Dark	
	Piano 2 Chords	

5.4.3.1. サンプルを選択する

サンプルブラウザ画面左のコラムはサンプルバンクです。ファクトリーバンクのタブにはArturiaロゴが 入っていて、そのバンクは削除や消去はできません。

選択したバンク内のサンプルは、リストを上下にスクロールすることで表示されます。サンプルの選択方 法には次の2つがあります:

- サンプルをシングルクリック:この場合、ブラウザ画面は閉じず、サンプルを1つずつオー ディションしたい場合に便利です。
- サンプルをダブルクリック:使用したいサンプルをダブルクリックして確定させるとブラウ ザ画面が閉じます。

この時、ブラウザの左コラムでバンクを切り替えてサンプルをオーディションしたり選択することもで きます。

ブラウザ画面を閉じるには、"X"をクリックします。

5.4.4. サンプルビューワー

サンプルビューワーにはロードしたサンプルの波形が表示されます。Main、Edit、Mapの各モードボタンで、そのサンプルの色々な設定をするパラメーターにアクセスできます。

	1111	A: H	Hull	Bread	ch				•	•							М	ain]	Edit		Мар
)		0.25		, ' 0.50	ו 0.75		' I 1.25		ı 1.50		1.75			ı 2.25		1 2.50		1 2.75				3.25 '
10		(ilpail)	(kilin	darrid	r ^killer	rillin (1) an in	wiels			limin	Dim	
ja I	nya	Miliin	wile	Hepta	n Mad Mark	un la		Ultin				hllin	hilly	Hallb	al (UII)		11141	NHUE NHUE		([pipi	luna	(Inter-
1				Þ I	3		¢ C -	+ +++ +	#+	 	D				E					F 🎆	-	<u></u>

各モードの簡単な説明は次の通りです:

- Main:サンプルビューワーのデフォルト状態です。このモードの場合、サンプルビューワーの下にグラニュラー関係のパラメーターが表示されます。波形は、Trim StartとStopマーカーの間の区間のみが表示されます。
- Edit:チューニング、再生方向、ループ機能、ユーティリティなどのパラメーターがサンプ ルビューワーの下に表示され、サンプル自体をエディットするのがEditモード [p.72]です。 Trim Start / Stopマーカーの設定も、このモードで行います。
- Map:キーボード/ベロシティレンジ、発音するサンプルの選択メソッド、再生時の挙動な どを設定するのがMapモード [p.75]です。Mapモードに入ると、そのモードのパラメーター がサンプルビューワーの下に表示されます。このモードでの波形表示は、Trim StartとStop の間の区間のみになります。

5.4.5. サンプルのエディット

ロードしたサンプルをエディットするには、ビューワー右上のEditボタンをクリックします。

Editボタンをクリックすると、サンプルビューワーがEditモードに入ります:

このEditモードで、チューニングやプレイバック、ミックスなど、個々のサンプルに対するエディットを 行います。また、サンプルのどの部分を発音させるかを、サンプルビューワー最上部のTrim Start / Stop マーカーで設定できます。

♪: MainやMapモードでは、Trim StartからStopまでの区間の波形のみがサンプルビューワーに表示されます。Edit モードでは、常にサンプル全体の波形が表示されます。

エディットしたいサンプルをプリビューウィンドウからクリックして選択し、必要に応じて以下のパラ メーターでエディットできます:

- Transp:サンプルを半音単位に±36半音の範囲でトランスポーズします。
- Fine:サンプルのチューニングを1セント単位に±1半音の範囲で微調整します。
- Root Note: サンプルのルートノート (オリジナルピッチ) を設定します。
- **Play Mode**:サンプルの再生モードを設定します。Normal (正再生) と Reverse (逆再生) があ ります。
- Loop:ループのオン/オフを設定します。オンの場合、Loop Start / Endマーカーがサンプル ビューワーの底部に表示され、ループ区間を設定できます。Loop Start / Endマーカーと、 Trim Start / Stopマーカー(後述)は別のものですのでご注意ください。
- Loop Mode:このドロップダウンメニューは、ループがオフの場合はグレーアウト表示に なります。メニュー内にはループ区間の再生方法を設定する2つのオプションがあります。1 つはForward (正再生)、もう1つはF&B (Forward & Backward:正逆再生を繰り返す、いわゆ る"ピンポン"ループ)です。
- Loop Fade: このパラメーターもループがオフの場合はグレーアウト表示になります。ここでは、ループのスタートポイントの前からフェードをかけてクロスフェードループを作れます。クロスフェードループを作っても、ループサイズ(ループ区間の長さ)は影響されません。フェードの長さがループサイズを超えたり、Trim Startからループのスタートポイントまでの区間を超える設定をした場合は、フェードの長さがそのまま反映されず、短縮されます。また、Loop FadeはLoop Mode = Forwardの場合にのみ使用できます。
- Gain:選択したサンプルスロットのその時のゲインレベルを調節します。サンプル間のレベルを揃えたい時に便利です。
- Pan:選択したサンプルスロットの左右間のパンニングを設定します。
- **Copy**:選択したサンプルを別のサンプルスロットにコピーするメニューが開きます。同じ サンプルを別々の設定で使用したい場合に便利です。
- Clear;選択したサンプルスロットを空にし、サンプル関連のパラメーターの各設定をリセットします。実行前に確認ダイアログが表示されます。

注:グレーの台形部分はループフェードです。ループフェードにつきましては、前のセクションをご覧く ださい。

#	名称	内容
1	Trim Startマ ーカー	サンプルの先頭位置を設定します。波形上部のフラグをクリック+ドラッグすると位置が変わります。 MainとMapモードでは、この位置以降の波形が表示されます。この位置は、Loop StartやSample/Grain Startよりも後ろに設定することはできません。
2	Loop Startマ ーカー	ループをオンにした時の、ループ開始位置を設定します。波形下部のフラグをクリック+ドラッグして 位置を設定します。
3a	Sample/ Grain Startポ イント	サンプルを再生するスタートボイントを設定します。Trim Start / Stopマーカーとは別の位置に設定でき ます。このポイントは、ループ区間の中や外、またはTrimマーカーと同じ位置に設定することもできま す。
3b	Sample/ Grain Startノ ブ	Sample/Grain Startポイントの位置をこのノブで調節します。この位置は固定ではなく、Trim Startと Trim Stopマーカーの位置によって変動します。
4	Loop Endマー カー	ループをオンにした時の、ループ終了位置を設定します。波形下部のフラグをクリック+ドラッグして 位置を設定します。
5	Trim Stopマー カー	サンプルの終端位置を設定します。波形上部のフラグをクリック+ドラックすると位置が変わります。 MainとMapモードでは、この位置以前の波形が表示されます。この位置は、Loop StartやSample/Grain Startよりも前に設定することはできません。

Sample/Grain Startポイントについて

サンプルやグレインがトリガーされると、Sample/Grain Startポイントの設定に従ってサンプルの再生が 始まります。このポイントは、0.00~1.00の範囲を0.001ステップで設定できます。

しかしこのポイントの位置は固定ではなく、Trim StartとTrim Stopマーカーとの距離によって変動しま す。そのため、Trim Start / Stopいずれかのマーカーを移動させると、それに応じてSample/Grain Start ポイントも移動しますが、どちらか一方の端に行くことはなく、Sample/Grain Startノブの設定値に従 い、Trim StartとTrim Stopとの間の距離に比例して移動します。

例えば、Trim Start / Stop間の距離が6秒で、Sample/Grain Startノブの設定値が0.500だった場合、サン プルまたはグレインの再生開始位置は2つのマーカーの中間地点 (Trim Startマーカーから3秒の位置) にな ります。この状態で2つのマーカーの距離を4秒にすると、サンプル/グレインの再生開始位置はTrim Start マーカーから2秒の位置になります。つまり、Sample/Grain Startノブの設定 (0.500) を変えない限り、そ のサンプル/グレインの再生開始位置は常に2つのマーカーの中間地点ということになります。

♪: Mapモードでは、サンプルの波形はTrim Start / Stopマーカーの間の区間のみが表示されます。

Mapモードのボタン:下表の各ボタンで、ロードしたサンプルの再生方法を設定します。表内で各オプションを簡単にご紹介し、それ以降のセクションでいつくか例を交えて機能の動作についてご紹介します。

モード	内容
Single	選択したサンプルが、キーボードの全域、全ベロシティレンジで発音するモードです。
Кеу Мар	6個のサンプルスロットをキーボードにマッピングするモードです。空のスロットがある場合は、その前のスロ ットがもう1オクターブ分をカバーします。例えば、最初のスロット2個が空の場合、サンプルが入った最初のス ロット (この場合はスロットC) が低音域のオクターブもカバーします。 Mapモード画面の右にある矢印ボタンをクリックするとMapの表示レンジが移動します。
Key/ Velo Map	サンブルが入ったスロットを3オクターブ、2段階のベロシティレイヤーにマッピングするモードです。Velocity の表示があるフィールドでサンブルが切り替わるベロシティ値を設定します。この表の後で3つの例を交えて詳 細をご紹介します。 Mapモードの画面右では各スロットがカバーするレンジ(音域)とベロシティスイッチが動作するベロシティ値が 表示されます。左右の矢印ボタンでマッピングの表示レンジが上下に移動します。
Sample Pick	サンブルの入ったスロットがキーボード上を均等にマッピングされ、Mapモード画面にSample Pickノブが表示 されるモードです。MIDIノートを受けてボイスがトリガーされる時に発音するサンブルをノブで指定でき、それ 以外のサンプルはそれ以降のMIDIノートに対して発音させることができます。 Sample Pickノブにマウスオーバーすると、Modアサインのアイコン (+) が表示されます。
Round Robin	受信したMIDIノートに対してサンプルの入ったスロットが循環的に発音するモードです。グラニュラーセクショ ンがオンの場合は、循環的に選ばれるサンプルのグレインを発音します。 Mapモード画面の右側にはサンプルの入ったスロットが表示されるだけで、その他のコントロール類はありません。
Random	MIDIノートを受信するたびに、サンプルの入ったスロットがランダムに選ばれるモードです。グラニュラーセク ションがオンの場合は、ランダムに選ばれたサンプルのグレインを発音します。 Mapモード画面の右側にはサンプルの入ったスロットが表示されるだけで、その他のコントロール類はありません。

5.4.6.1. Mapモードの例

プリビューウィンドウでは、ゾーン/ベロシティレンジに応じて、あるいはその他の方法で選択されて発音されたサンプルが表示されます。それを踏まえて、以下の例を実際にやってみると各モードの動作が分かりやすくなります。

Single

Single	Sample Pick				
Кеу Мар	Round Robin	A	В		
Key/Velo Map	Random				

Singleモードでは、各スロットにサンプルが入っているかどうかだけが表示されます。サンプルスロット ボタンをクリックして、どのサンプルを発音させるかを指定できます。

Single	Sample Pick		A	В	C	D	E	F	
Кеу Мар	Round Robin	•			11 111	11 111	11 111	11 111	
Key/Velo Map	Random		C1	C2	C3	C4	C5	C6	
					Ra	nge			

全スロットにサンプルが入っている場合

Key Mapモードでは、サンプルの入ったスロット数によって各スロットのマッピングが少し変わります。 6スロットすべてにサンプルが入っている場合は次のようになります:

- スロットA:MIDIノートのC-2~B1をカバー
- スロットB~E:各スロットで1オクターブずつカバー
- スロットF:MIDIノートのC6~C8をカバー

Single	Sample Pick		A	В		D		F	
Кеу Мар	Round Robin	•		11 111	11 111		11 111	11 111	
Key/Velo Map	Random	C-1	C0	C1	C2	C3	C4	C5	C6
					Rai	nge			

2つのスロットが空の場合

この例ではスロットCとEが空になっています。

- スロットA:MIDIノートのC-2~B0をカバー
- スロットBとD:2オクターブずつをカバー
- スロットF: MIDIノートのC5~C8をカバー

Key/Velo Map

全スロットにサンプルが入っている場合

このモードでは、サンプルの入ったスロット数によって動作が大きく変わります。6スロットすべてのサ ンプルが入っている場合は、次のように動作します:

- サンプルスロットが縦に2個ずつ重なっています。下のスロットは低いベロシティレンジを 担当します。
- Velocityフィールドにある数値が、低ベロシティ帯と高ベロシティ帯を切り替える「しきい 値」になります。
- スロットAとDは、同じ音域 (C-2~B3) をカバーし、MIDIノートのベロシティ値によってどち らかが発音します。
- スロットBとEは、同じ音域 (C4~B4) をカバーし、MIDIノートのベロシティ値によってどち らかが発音します。
- スロットCとFは、同じ音域 (C5~C8) をカバーし、MIDIノートのベロシティ値によってどち らかが発音します。

スロット2個がサンプルをロードしていない空の場合はどうなるのでしょうか?次を見てみましょう。

				D		F	
Single	Sample Pick			A	В		
Кеу Мар	Round Robin		•		11 111		•
Key/Velo Map	Random	22		C1	C2	C3	C4
		Velocity			Range		

スロットCとEが空の場合のKey/Velo Map

この例では、スロットCとEが空です。一見、変な感じに見えますが、こうすることで実は面白い可能性が広がります。

- スロットAとDはC-2~B1の音域をカバーし、MIDIノートのベロシティ値によってどちらかが 発音します。
- スロットBとDはC2~B2の音域をカバーしていますので、MIDIノートとそのベロシティ値に よってAかDのどちらか、またはBかDのどちらかを発音させることができます。
- スロットBとFはC3~C8の音域をカバーしていますので、MIDIノートとそのベロシティ値に よってBかDのどちらか、またはBかFのどちらかを発音させることができます。

もう1つ別の例をご紹介します。

				D	E	F	
Single	Sample Pick			С			
Кеу Мар	Round Robin		•				•
Key/Velo Map	Random	49		C3	C4	C5	
		Velocity			Range		

Key/Velo Map with sample slots A and B empty

この例ではスロットAとBが空です。スロットCが全音域をカバーしつつ、低ベロシティ帯を担当していま すので、MIDIノートとそのベロシティ値によってスロットD, E, FとCのどちらかを発音させることができ ます。

- スロットCとDはC-2~B3の音域をカバーし、その範囲でのMIDIノートのベロシティ値によっ てどちらかが発音します。
- スロットCとEはC4~B4の音域をカバーし、その範囲でのMIDIノートのベロシティ値によっ てどちらかが発音します。
- スロットCとFはC5~C8の音域をカバーし、その範囲でのMIDIノートのベロシティ値によっ てどちらかが発音します。

Sample Pick

全スロットにサンプルが入っていて "mod+"が表示された状態

このモードでは、サンプルが入っているスロット数によって動作が少し変わります。6個のスロットすべてにサンプルが入っている場合は、次のように動作します:

- ノブやモジュレーションでいずれかのサンプルスロットを選択できます。
- MIDIノートに対して発音するサンプルスロットを1つに限定でき、その他のサンプルは選択 することでそれ以外のノートで発音させることができます。

この例ではスロットCとEが空で、その2つがスキップされていて、Sample Pickノブを操作したか、モジ ュレーションがかかった状態になっています。その他の動作は全スロットにサンプルが入っている場合と 同じで、サンプル数が6個ではなく4個になっているだけです。

Round Robin

Single	Sample Pick
Кеу Мар	Round Robin
Key/Velo Map	Random

6個のスロットすべてにサンプルが入っている場合のRound Robinモードでは、MIDIノートに対してスロットA~Fが循環して発音します。

Single	Sample Pick
Кеу Мар	Round Robin
Key/Velo Map	Random

この例ではスロットCとEが空です。この2つをスキップして循環してサンプルが発音します。

Random

Single	Sample Pick	CD
Кеу Мар	Round Robin	B E
Key/Velo Map	Random	A F

6個のスロットすべてにサンプルが入ったRandomモードでは、MIDIノートを受信すると6個のうちいず れかのスロットがランダムに選ばれて発音します。

Single	Sample Pick
Кеу Мар	Round Robin
Key/Velo Map	Random

この例ではスロットCとEが空ですので、サンプルが入っている4個のスロットからランダムに選ばれま す。選択肢は減りましたが、どれが発音するかは依然として藪の中です。

5.4.7. サンプルエンジンチューン

このセクションの各パラメーターで、サンプルエンジンの全体的なチューニングをします。詳しくは「各 エンジンで共通の機能」のエンジンチューン [p.45]をご覧ください。

5.4.8. Sample/Grainセクション

- Start: Trim StartとTrim Stopマーカーの距離に応じたサンプル (またはグレイン)の再生開 始位置を設定します。ここでの設定は、グラニュラーセクションをオンにした場合のグレイ ンを発音させる位置のリファレンスとしても利用されます。
- Volume: サンプル (またはグレイン) の再生時の音量を設定します。

5.4.9. グラニュラーセクション

このセクションは、サンプルエンジンをグラニュラーシンセサイザーとして使用するためのセクション です。このセクションがオフの場合、サンプルエンジンは一般的なサンプルプレイバックエンジンとして 動作します。

- 1. Random Density: Densityパラメーターのランダム性を設定します。ドロップダウンメニ ューでグレインがランダムに増えるか減るかを選択します。
- Density Type: グレインの発生するベースを設定します。ドロップダウンメニューでグレインの発生をHz単位またはテンポに同期した音符単位のタイミング (付点、三連も選択可)を選択します。
- Direction:グレインの再生方向を設定します。デフォルト設定ではノブは右に向いていて 正再生になっています。ノブを左に回すとグレインが逆再生になります。センターポジショ ンでは正/逆再生の確率が50%になります。
- Random Pitch: ピッチがランダムに変化する量を0~3オクターブの範囲で設定します。ドロップダウンメニューでピッチが元のピッチから下がる、上がる、またはその両方を選べます。
- Random Start:各グレインの再生スタートポイントがランダムに変化する量を設定しま す。ドロップダウンメニューでは、ランダムに再生スタートする位置を元のスタートポイン トよりも前、後ろ、またはその両方から選べます。
- Grain Envelope Shape:ドロップダウンメニューでグレインのエンベロープを8タイプから 選べます。最終的なエンベロープはShapeノブの向きによって決まります。
- Shape:各グレインの振幅エンベロープの大まかな形をGrain Envelope Shapeで設定し、このノブでそのシェイプの最終的なカーブをスムーズなものから断続的なものまで調節します。
- Grian Size: 各グレインの長さを設定します。ドロップダウンメニューでAbsolute (1ms~1sの絶対値)、テンポに同期した音価 (付点、三連も選択可)、または割合 (Densityに 対する割合) から選択できます。
- Random Size: Grain Sizeで設定した各グレインの長さをランダムに変化させる大きさを設定します。ドロップダウンメニューでサイズがランダムに変化する方向 (大きくなる、小さくなる、またはその両方)が選べます。
- 10. Limit: グレインが重なる限度量を3~256の範囲で設定します。
- Random Stereo (Pan or Width): ランダムに変化させるターゲットをドロップダウンメニ ューで選択します: Panは、グレインの左右間の定位のみをランダム化したい場合に、 Widthは、Random Size, Random Pitch, Random Startに応じて左右間の定位をランダム化 したい場合に使用します。
- 12. Random Volume:各グレインの音量レベルのランダムなバラつきを設定します。なお、グレインの最大ボリュームはSample/GrainセクションのVolumeノブで調節します。

5.4.10. シェイパーモード

チューンセクションのすぐ下にはシェイパーモードセクションがあります。セクション名の右にある小さ な矢印ボタンをクリックすると、5タイプのシェイピングオプションから1つを選択できます。

5.4.10.1. None

シェイパーモードがバイパスになり、シェイパーモードセクションでは何も変化させない状態になりま す。

5.4.10.2. Unison

1つのMIDIノートに対して最大8ボイスまでを同時に発音できるユニゾンモードになります。この場合、 各ユニゾンボイスのピッチはデチューンされ、左右間のパンニングが広がった状態になります。ユニゾン モード [p.48]の詳細は「各エンジンで共通の機能」をご覧ください。

5.4.10.3. Resonator

このレゾネーターエフェクトは、6個のバンドパスフィルターが並列にあり、特定の周波数に設定するこ とで非常に面白いテクスチャーになります。6個のうち最初のフィルターの周波数はチューンセクション とMIDノート(キーボードの音程)によって変化します。グラニュラーモードでは、レゾネーターのピッ チ(周波数)はグレインのピッチに応じて変化し、グレインのランダムなピッチ変化にも反応します。最初 のフィルター以外の周波数は、最初のフィルターの周波数に対して倍音関係になるようにセットされま す。

- Coarse:レゾネーターの基本チューニングを設定します。
- Wet/Dry:ドライ音とレゾネーターがかかった音のミックスバランスを設定します。
- Q:レゾネーターのフィルターレゾナンス/ディケイを設定します。
- Inharm:0(センターポジション)の場合、レゾネーターの各フィルターの周波数は倍音関係に整った間隔になります。0より上にすると、各周波数の間隔が広がり、0より下にすると間隔が狭くなります。0以外の設定値の場合、高音域のフィルター周波数はサンプル/グレインのピッチに対する協和倍音関係ではなくなり、その結果不協和なピークが発生してベルや金属的な音に変化します。

5.4.10.4. BitCrush

このオプションは、サンプルレートやビットデプスを下げて "ビットクラッシャー" サウンドにします。

- Decimate:サンプルレートを下げて荒れた音にします。
- Bit Depth:ビットデプスを下げて粗い音にします。
- Key Track:オンの場合、Decimateの値がキーボードのピッチに追従します。

5.4.10.5. Modulation

このオプションでは、リニアFM (スルーゼロ) とリングモジュレーターが使用できます。

- Freq Mod:スルーゼロFMの変調量を設定します。
- Ring Mod: リングモジュレーションの変調量を設定します。

♪: このセクションのモジュレーションソースはモジュレーターセクションを使用します。そのため、モジュレー ターのピッチが変化すると、FMやリングモジュレーションの効果も変化します。

5.4.11. アウトプットセクション

- Filter Mix:サンプルエンジンの音の出力先を設定します。ノブを左いっぱいに回すとFilter 1に、右いっぱいに回すとFilter 2に音が送られます。ノブをその中間の位置にすると両方の ミックスになります。
- Volume:サンプルエンジンの音量を設定します。

5.4.12. モジュレーターオシレーター

このセクションでは、サンプルエンジンで使用するモジュレーターオシレーターの各種設定をします。

5.4.12.1. Modulator Oscillator Tuning

このノブでモジュレーションの中心ピッチを半音単位で設定します。矢印ボタンでチューニングモード (下表)を選択できます。

チューニン グモード	内容
Relative	サンプルエンジンのチューニングに対するオフセット量を半音単位で設定します (土3オクターブ)
Absolute	サンプルエンジンのチューニングから独立して半音単位でピッチを設定します (±3オクターブ)。ノートナン バー、ピッチホイールの値、グライドに追従します。
Hertz (Hz)	サンプルエンジンのチューニングから独立してHz単位でピッチを設定します (20.0~3,000Hz)。ノートナンバ ー、ピッチホイール、グライドには追従しません。

5.4.12.2. Modulator Oscillator Fine tune

モジュレーターオシレーターのピッチを±1半音の範囲で微調整します。

♪: Ctrlキーを押しながら、または右クリックをしながらノブを回すとさらに細かな調整ができます。

5.4.12.3. Modulator Oscillator Volume

このボリュームを上げると、モジュレーターオシレーターのダイレクト音がサンプルエンジンの音にミッ クスされます。

5.4.12.4. Modulator Oscillator Wave

モジュレーターオシレーターの波形を10種類から選択します。5種類のシンプルな波形と、5種類のノイズソースの合計10種類です。

波形	内容
Sine	定番のサイン波モジュレーションソースです
Triangle	サイン波と似ていますが上下の動きが直線で頂点の瞬間が一瞬しかない波形です
Sawtooth	プラス方向から下がっていく波形です
Ramp	ノコギリ波とは逆にマイナス方向から上がっていく波形です
Square	周期の半分をプラスの最大、残りの半分をマイナスの最大をとる波形です
Blue Noise	ランダムノイズにハイパスフィルターをかけた波形です
White Noise	フィルターがかかっていない、全帯域成分を含んだノイズです
Pink Noise	ランダムノイズにローパスフィルターをかけた波形です
Red Noise	ローパスフィルターをさらにきつくかけたランダムノイズです
Rumble	ノイズの最低帯域のみを抽出した波形です

6. フィルター

シンセサイザーにはクレイジーな機能がたくさん入っていますが、決定的に重要なコンポーネントはオシ レーターとフィルターだろうと思います。音作りには出発点となるオシレーターが必要です。その点 Pigmentsはヴァーチャル・インストゥルメントの世界でもトップクラスのパワフルさと多彩さを兼ね備 えたオシレーターが入っています。

オシレーターと同様に重要なのが、音を作り上げたり破壊していくフィルターです。好みや楽曲の雰囲気 に合わせてオシレーターからの音をマイルドにしたり、よりワイルドにしたりすることがフィルターには 求められます。

そのことを念頭に、PigmentsのフィルターセクションにはArturiaがベストと考えるフィルターを数多く 搭載しました。これらのフィルターがユニークな音作りにきっと役に立ちます。

6.1. フィルターセクションの共通機能

Pigmentsでは2つのフィルターを色々なセッティングにして同時使用することができます。各フィルターのパラメーターは共通ですのでまとめてご紹介します。

6.1.1. フィルタービュー・ウィンドウ

各フィルターにはそのセッティングをグラフィック表示するウィンドウがあります。例えばカットオフフ リケンシーを調節すると、その操作に応じた反応がグラフィカルに表示されます。

ウィンドウ内をクリックしてドラッグすると次の操作ができます:

- 左右にドラッグするカットオフフリケンシーの調節ができ、
- 上下にドラッグするレゾナンスの調節ができます。

♪: 各フィルターの各パラメーターはPigmentsの様々なパラメーターや外部MIDIソースでモジュレーションするこ とができます。

6.1.2. フィルター・ボリューム

Volumeパラメーターで他のフィルター出力に対する選択したフィルターの相対的な出力レベルを調節します。2つのフィルターが完全にシリーズ接続になっている場合、フィルター1の出力はすべてフィルタ -2に入ります。この場合、フィルター2の出力が低すぎるとフィルター1による音色変化がほとんど聴き 取れなくなってしまうことがあります (あるいはフィルター2で"おいしい"歪みを作り出すこともできま す)。

♪: フィルター1と2が100%のシリーズ接続でフィルター2のVolumeがゼロの場合、音が出なくなります。

6.1.3. フィルター・パン

Panパラメーターでフィルターのパンニングを設定できます。最終的なパンニングは2つのフィルターの ルーティング (シリーズ、パラレルまたはその中間的な設定) により変化します。

♪: フィルター1と2が完全なシリーズ接続で両方のフィルターが互いに真逆のパンニング(フィルター1が完全に 左、2が完全に右など)の場合、フィルター1のオーディオ信号は聴こえなくなります。

6.1.4. フィルター・タイプメニュー

フィルターのタイプフィールドをクリックするとドロップダウンメニューが開いてフィルターのタイプ を選択できます。タイプを選択するとメニューが閉じます。

=	FILTER 2	MultiMode • FILTER 2 TYPE	
		LowPass Gate	Surgeon
	SEM	Matrix 12	Mini
nd 1	Comb	Phaser	Formant
			and the second second second

フィルタータイプのほとんどにはLP (ローパス) やHP (ハイパス)、BP (バンドパス) など、色々な動作モードが入っています。各フィルタータイプはフィルタータイプとモード [p.88]でご紹介します。

6.1.5. フィルター・バイパス

各フィルター画面の右上コーナー部分にバイパスボタンがあり、これをオンにするとフィルターがバイパ スされてボイズエンジン (アナログ、ウェーブテーブル、またはサンプル)のダイレクト音になります。但 し2つのフィルターが100%のシリーズ接続の場合、最初のフィルターをバイパスしてもエンジンからの オーディオ信号はフィルター2に入ります。

6.1.6. フィルター・エディットエリア

フィルタービューウィンドウ [p.85]の周辺には選択したフィルタータイプの各種パラメーターがありま す。各パラメーターにつきましては後述します。

6.1.7. フィルターのコピーとスワップ

2つのフィルターで音作りをしている場合やフィルターを完全にシリーズ接続している場合、フィルター の順序を入れ替えることで音色が大きく変わることがります。このボタンをクリックするとフィルター1 からフィルター2へコピー、フィルター2からフィルター1へコピー、または2つのフィルターを入れ替え る、という3タイプのオプションから1つを選択できます。

6.1.8. シリーズ、パラレル、またはその中間

フィルター1と2はシリーズ、つまりフィルター1の出力をそのままフィルター2に入力する接続ができま す。この接続の場合、入力信号に対して非常に急峻なフィルタリングが行えます。

2つのフィルターはパラレルにすることもできます。この場合それぞれのフィルターのキャラクターがよりハッキリと出ます。

またはその中間、つまりシリーズとパラレルがミックスした状態に設定することも可能です。詳しくはフィルター・ルーティング [p.95]をご参照ください。

6.2. フィルタータイプとモード

```
■
】♪:ほとんどのパラメーターはCtrlキー+ドラッグの操作で微調整ができます。
```

6.2.1. MultiMode

このマルチモード・アナログフィルターはPigments専用のフィルターで、ローパスやハイパス、バンド パス、ノッチなど12種類のモードがあります。各モードとも12、24、36dB/octのスロープが選べます。 非常にパワフルなフィルターです。

マルチモードフィルター

パラメータ ー	内容
Cutoff	オーディオ信号を強調したり弱めたりする周波数を設定します
Resonance	カットオフ・フリケンシー付近の帯域を強調します
FM Source	ネームフィールドをクリックするとメニューが開いてFMソースの選択ができます。"No FM"選択時はノブがグ レー表示になります。
FM Amount	選択したソースによるフィルターへのフリケンシー・モジュレーション (FM) の量を調節します
Mode	ローパス、ハイパス、ノッチ、バンドパスとそれぞれ12,24,36dB/octの合計12モードから1つを選択します

永遠の定番フィルターの1つとも言える、1970年代から80年代にかけて活躍した控えめな見た目の白いボ ックス型のOberheim SEM (Synthesizer Expansion Module) に搭載されていたフィルターです。このフィ ルター独特のマルチモードも含めて忠実に再現しました。

パラメータ ー	内容
Cutoff	オーディオ信号を強調したり弱めたりする周波数を設定します
Resonance	カットオフ・フリケンシー付近の帯域を強調します
FM Source	ネームフィールドをクリックするとメニューが開いてFMソースの選択ができます。"No FM"選択時はノブがグ レー表示になります。
FM Amount	選択したソースによるフィルターへのフリケンシー・モジュレーション (FM) の量を調節します
Mode	バンドパスからローパス、ノッチ、ハイパスへと連続可変します

Arturia SEM Vではフィルター以外のオシレーターやその他の機能も忠実に再現し、さらにパワフルな機能も追加しています。詳しくはArturiaウェブサイトをご覧ください。

6.2.3. Matrix 12

シンセサイザーのエンスーで、すべてのオーバーハイム・シンセサイザーのフラッグシップ機と言えるこ の機種を垂涎の的としなかった人はいないのではないでしょうか。それがMatrix 12です。この傑出した フィルターから"おいしい"ところを数多くピックアップしてPigmentsに収めたのがこのフィルターで す。

パラメータ ー	内容
Cutoff	オーディオ信号を強調したり弱めたりする周波数を設定します
Resonance	カットオフ・フリケンシー付近の帯域を強調します
FM Source	ネームフィールドをクリックするとメニューが開いてFMソースの選択ができます。"No FM"選択時はノブがグ レー表示になります。
FM Amount	選択したソースによるフィルターへのフリケンシー・モジュレーション (FM) の量を調節します
Mode	Matrix 12 Vのフィルターから厳選した6種類から1つを選択できます

Arturia Matrix-12 Vではフィルター以外にもオシレーターやモジュレーション・マトリクスなども含めて 伝説的なMatrix 12を忠実に再現し、さらにパワフルな機能を追加しています。詳しくはArturiaウェブサ イトをご覧ください。

6.2.4. Mini

FILTER 1	Mini		ወ
Outeff	\bigcirc	٨	Volumo
	Reso		
KBD -	Drive		Pan

1960年代から70年代にかけて音楽界をシンセサイザー旋風に巻き込んだアイコン的な24dB/octラダーフィルターは、間違いなく最も有名なシンセフィルターでしょう。そのフィルターを再現したのがこのMiniフィルターです。

パラメータ ー	内容
Cutoff	オーディオ信号を強調したり弱めたりする周波数を設定します
Resonance	カットオフ・フリケンシー付近の帯域を強調します
FM Source	ネームフィールドをクリックするとメニューが開いてFMソースの選択ができます。"No FM"選択時はノブがグ レー表示になります。
FM Amount	選択したソースによるフィルターへのフリケンシー・モジュレーション (FM) の量を調節します
Drive	オーディオアウトを外部オーディオインプットに接続する音作りテクニックをシミュレートします

Arturia Mini Vではフィルター以外にもオシレーターなどその他の機能も忠実に再現し、さらに当時の開 発者も想像つかなかったような新機能も数多く追加しています。詳しくはArturiaウェブサイトをご覧く ださい。

6.2.5. Surgeon

サージョンフィルターは64dB/octという極めて急峻な特性のフィルターで、各種モードが選択できます。

パラメーター	内容	
Cutoff	オーディオ信号を強調したり弱めたりする周波数を設定します	
Spread	モードがNotchまたはBP時のみ使用可能です。カットオフ周辺の帯域幅とデプスを調節します。	
Mode	ネームフィールドをクリックしてメニューを開いてLP, HP, Notch, BPの4種類から1つを選択できます	

6.2.6. Comb

コムフィルターは入力信号に非常に短いディレイをかけた信号と入力信号をミックスして干渉を発生さ せて、倍音を強調したり (ピーク) 大きく弱めたり (ノッチ) する変化が生じるフィルターです。

パラメーター	内容
Freq	ピークやノッチが発生する周波数帯域を設定します
Gain	ピークやノッチの強烈さを調節します
KBD	フィルター・フリケンシーに対するキーボードトラッキングの量を調節します
Mode	フィードバック、フィードフォワード (フィルターを反転させてピークを水平に、谷部分をノッチにします)

6.2.7. Phaser filter

フェイザーフィルターは1960年代のポップスで頻繁に見られたエフェクターのフェイザーをヒントにしたものです。入力信号の倍音にピークやノッチを発生させるという点ではコムフィルターと似ていて、エフェクターのフェイザーはLFOでモジュレーションをかけるのが一般的です。Pigmentsのフェイザーフィルターでは発生するピーク(ポール)の数も設定できます。

パラメーター	内容
Cutoff	ピークやノッチが発生する周波数帯域を設定します
Feedback	ピークやノッチの強烈さを調節します
Poles	発生するピークとノッチの数を設定します:最小=2、最大=12

6.2.8. Formant

間違いなく最もパワフルと言えるフィルターは言葉を発することができる人間の口腔部でしょう。フォル マントフィルターは入力信号を色々な"母音"に加工するフィルターです。

パラメーター	内容
Freq Shift	フィルター効果をかける周波数帯域を設定します
Morph	フィルターのレゾナント・ピーク部分の配置を調節します
Q Factor	レゾナント・ピークの強烈さを調節します
Blend	入力音のダイレクト音とフィルターがかかった音のミックスパランスを調節します

6.2.9. LowPass Gate

ローパスゲートはフィルターの1タイプながらVCA (voltage controlled amplifier)の一種として動作する ものです。カットオフ・フリケンシーがありますので、フィルターが完全に"閉じた"状態では音が出なく なることもあります。カットオフ・フリケンシーをエンベロープでモジュレーションすることで、VCAの ように"ゲート"が開閉して、オーディオ信号が通過します。ごく初期のシンセサイザーのパイオニア達 は、この方法によるフィルタリングを発見し、ハンドドラムやコンガ、スティールドラムなどの"チュー ンドパーカッション"の素晴らしい音色を作っていました。

Pigmentsのローパスゲートにはいくつかの追加機能もあります。トラディショナルなローパスゲートの 動作に加え、VCAとして動作するモード、ローパスゲートとVCAの両方の機能が同時に動作するモードも 選べます。

パラメータ ー	内容
Level	フィルター/ゲートを手動で開閉する際に使用します。
Modulation Amount	選択したモジュレーションソースでLevelノブをコントロールするモジュレーション量を調節します (下記参照)。
Modulation Source	Levelノブをコントロールするモジュレーションソースを選択します。 "None"選択時はModulation Amountノブはグレー表示になります。
Mode	ドロップダウンメニューでローパスゲートの動作モードを一般的なVCA、ローパスフィルター、またはその両 方の3モードから1つを選択します。
Time	コントロール入力にショートインパルスを受けた時に、ローパスゲートが閉じるスピードを、"Fast", "Medium", "Slow"から1つを選択します。この設定で、モデリングしたVactrol (ローパスゲートでよく使われ ていた素子) の特性が変化し、音色自体も変化します。

♪: ディケイが非常に短いエンベロープでLevelノブをモジュレーションした場合、その効果は特に動作モードを Bothにした時に顕著に現れます。一般的に、トラディショナルなVactrolベースのローパスゲートは、ゲートが開くの は非常に速いものの、閉じるスピードは比較的緩慢で、Pigmentsもその特性をモデリングしています。ゲートが閉じ るスピード (ディケイタイム) は動作モードによって変わりますが、BothモードはVCAモードよりも遅くなるようにな っています。

7. FILTER ROUTING/AMP MODセクション

この両セクションがオーディオ信号の最終段になります。パラメーター数はわずかですがそうとは思えな いほどの柔軟性があります。

♪: このセクションの各パラメーターにはモジュレーションをかけることができます。パラメーターにマウスオー パーすると表示される小さな"+"アイコンをクリックして、画面中段のモジュレーション・ストリップ内のスライダー でモジュレーションレベルを調節します。

7.1. Filter routing

フィルター1と2がシリーズ接 続した状態

Filter Routingパラメーターで2つのフィルターの配置をシリーズ [p.96]またはパラレル [p.96]あるいは両 方のコンビネーション [p.97]に設定できます。配置やそのバランスを変更するには、Filter Routingノブ をクリックして上下にドラッグします。

7.1.1.シリーズ接続

フィルター1と2はシリーズ接続にすることができます。これはフィルター1の出力がダイレクトにフィル ター2に入る接続法です。入力信号を極めて精密にフィルタリングできます。

シリーズ接続にするには、Filter Routingノブをクリックして下にドラックします。ノブが左いっぱいに 回し切った状態になると値の表示が上図のように**F1 -> F2**になります。これで2つのフィルターが完全に シリーズ接続になります。

♪: フィルター1と2がシリーズ接続でそれぞれのパンニングが真逆 (1が完全な左、2が完全な右、またはその逆) に 設定されている場合、フィルター1からの音は聴こえなくなります。フィルター1と2が100%のシリーズ接続でフィル ター2のボリュームがゼロの場合は、フィルターがバイパスモードになっていても音がまったく出なくなります。

7.1.2. パラレル接続

2つのフィルターはパラレルに接続することもでき、それぞれのフィルターで別々に音作りをすることが できます。

パラレル接続にするにはFilter Routingノブをクリックして上にドラッグします。ノブが右いっぱいに回 し切った状態になると値の表示が上図のように**F1 // F2**に変わります。これで2つのフィルターが完全にパ ラレル接続になります。

7.1.3. パラレルとシリーズのミックス

シリーズとパラレルがミックスされた状態にすることもできます。この場合、シリーズとパラレルのミッ クス割合が値として表示されます。

ミックスの状態にするにはFilter Routingノブをクリックして上または下にドラッグします。ノブの状態 が左または右いっぱいの状態だった場合、値は上図のように**75% F1 -> F2, 25% F1 // F2**というように変 化します。この時、ノブの向きによって表示される%値が変化します。

♪: Ctrlキーを押しながらFilter Routingノブをクリックしてドラッグすると、より細かな設定ができます。

7.1.4. フィルター順序のスワップ

-

2つのフィルターが完全でも部分的でもシリーズ接続になっている場合、フィルターの順序を入れ替える ことで音色が大きく変化することがあります。フィルターセクションのフィルター1と2の間にあるスワ ップフィルター・ボタン [p.87]をクリックすると、フィルターのセッティングが1から2、またはその逆に 移動します。

↓: フィルター1と2が100%のシリーズ接続で、フィルター2のボリュームがゼロの場合、フィルター2がバイパスモ ードになっていても音が出なくなります。

7.2. VCAセクション

7.2.1. Amp Mod

各プリセットの出力レベルはベロシティやLFO、モジュレーションホイール、あるいは*チューリングやサ ンプル&ホールドジェ*ネレーターなどより複雑なものなど豊富なソースから1つを選択してモジュレーシ ョンすることができます。

7.2.1.1. ソースの選択

Amp Modソースを選択するには、Amountノブの上をクリックします。するとメニューが表示されて選択しているソースにチェックマークが付いています。別のソースに変更するには、使用したいソース名を クリックします。ソースを変更するとメニューが閉じます。

選択しているソースを変更せずにメニューを閉じるには、メニュー以外のPigmentsの画面 (どこでもOK です)をクリックします。

ソースによる音量モジュレーションの深さをAmountノブで調節します。ノブの値がゼロ (左いっぱいに 回し切った状態) でモジュレーションがかからない状態となり、そのプリセットは常に最大振幅で出力で きます。

ー例としてAmp ModソースがVelo (ベロシティ) に設定され、Amountの値がゼロになっているデフォルトのプリセットを選んで次の操作をしてみてください:

- ベロシティを変えて同じノートを繰り返し弾きます。この時、音量変化は生じません。
- 低いベロシティだけで同じノートを繰り返し弾きながらAmountノブを上げます。すると音量が下がります。
- Amountの値を1.00 (最大値) にしてベロシティ127 (最大) で弾きます。
- Amountノブをダブルクリックして値を0.00 (モジュレーションなしの状態) にリセットします。この時に弾いた出力レベル(音量) はAmountの値を1.00にして最大ベロシティで弾いた時と同じレベルになります。

♪: Amountの値が0の場合でも、ベロシティやその他のソースでオシレーターのボリュームやフィルターをモジュ ィーションしている場合があります。そのため、このAmountが0でも出力レベルが常に一定であるとは限りません。

また、Amountノブにはアンプモジュレーション量を別のソースでコントロールできるModリングがある こともポイントです。例えば音量をLFOでモジュレーションしていて、そのLFOの出力レベルをキーボー ドベロシティでコントロールすることもできます。

7.2.2. Voice Pan

Voice Panパラメーターでそのプリセットのパンニングを設定します。このパラメーターにモジュレーションがかかっていない場合、すべてのボイスはこのパラメーターで設定した定位で発音します。

7.2.3. Voice Send Level

Send Levelノブでエフェクトのセンドバスに送るレベルを調節します。このノブはFXタブ [p.100]のセン ドコントロール [p.106]と連動しています。つまり、どちらか片方をエディットするともう一方にもそれ が反映されます。

8. エフェクトタブ

良いエフェクトがあると音色を楽曲に合わせて仕上げるのに便利です。コーラスやコンプレッサー、ディレイ、リバーブ、EQなどで美しく仕上げる方向性もあれば、ディストーションやビットクラッシャー、ウェーブフォールディングあるいは極端なEQ設定などで音を汚していく方向もあります。また、エフェクトの多くはテンポと同期可能ですので楽曲と音色をタイトに結びつけることも可能です。

Pigmentsのエフェクトは充実の内容です。エフェクトチェインを3系統使用でき、それらを色々にルーティングできます。各エフェクトチェインには3つのエフェクトプロセッサーがありますので、1つの音色に 合計9個のエフェクトを同時に使用できます。

さらに、すべてのパラメーターはMIDIアサインが可能で、多くのパラメーターはエンベロープやLFOなど のシンセパラメーターでモジュレーションをかけることができます (プロのコツ:Modリング [p.147]をご 覧ください)。

8.1. 共通機能

8.1.1. バス/センドタブ

		ALL TYPES		Sor	ar	•	ľ	>			Synth	Seq	Q.	Mas
FX : BUS A			Φ	FX : BUS B					ወ	FX : SEND BUS				ወ
O Wavefolder 🕂	Overdrive	Reverb	+	Distortion		StereoPan		😃 Multi Filter	+	😃 Delay	O Delay	එ Stere	oPan	÷

各エフェクトチェインにはそれぞれのタブを選択することでアクセスできます。各タブは3つに細分され、それぞれにエフェクトプロセッサーが1つ入っています。

Pigmentsのエフェクト部の美点は、各エフェクトチェイン内で全13種類のエフェクトを自由な接続順で 使用できる点にあります。例えばEQ->コーラス->リバーブやリバーブ->コーラス->EQあるいはどんなエ フェクトでも好きな順序で接続できます。これにより1つのエフェクトバスだけでも2,500通り以上の組み 合わせが可能です。しかもエフェクトバスは3つあり、2つをシリーズ接続にしたり、3つ全部をパラレル にすることもできます。驚異的な可能性です。

8.1.2. エフェクトタイプの選択

エフェクトタブ内のエフェクトを選択するには、そのタブのサブディビジョンにあるネームフィールド をクリックします。メニューが開いてエフェクトリストが表示されます。外周が点灯しているエフェクト が現在選択しているエフェクトです。

10	Delay		Presets							
	FX 1 TYPE									
(Tim	None	✓ Multi Filter	へ Param EQ	ر Compressor						
(つ」 Distortion	つ Overdrive	∩ں Wavefolder	₩ Bitcrusher						
F	م Chorus	∞ Flanger	∼ Phaser	000 Stereo Pan						
Feei)))) Tape Echo	Reverb							

エフェクトを選択するとメニューが閉じます。選択を変更せずにメニューを閉じるには、ネームフィール ドをもう一度クリックするか、それ以外のPigmentsの画面のどこか(どこでもOKです)をクリックしま す。

8.1.3. エフェクト・プリセット

各エフェクトタイプにはファクトリー・プリセットがあり、オリジナル・プリセットを作成してセーブ/ リコールもできます。そのため、他のPigmentsプリセットのエフェクトでどういう仕組みになっている のかを知るためにそれを"拝借"したいものがあっても簡単です。まずエディットした内容を後でリコール できるようにするためにセーブしておきます。次にエフェクトウィンドウのプリセットフィールドをクリ ックしてオーディションしたいプリセットを選択します。

Compre	ssor 🔻		Presets		None
			Compress	or Pre	sets
			Default		
			Distort		
· · · · · · · · · · · · · · · · · · ·			Hard		
			Medium Co	ompressi	on (use Threshold)
Allack			Parallel		
\mathbf{O}	Makeup				
Release		Outpu	Save As		

プリセットメニューはエフェクトタイプによって変わります

制作中の楽曲のイメージにファクトリープリセットが"ほとんどOKだけど完璧ではない"場合、少しエディットしてSave Asコマンドで保存します。名前を付けてファクトリープリセットの下にあるユーザープリセット・エリアにセーブします。ユーザープリセットも元のユーザープリセットを残しておきたいかどうかでSaveまたはSave Asを使い分けてセーブできます。

非ファクトリープリセットで不要なものがある場合、そのプリセット名の右にある"X"をクリックして削 除できます。この時、誤操作による削除を防止するため、本当に削除しても良いかどうかを確認するウィ ンドウが開きます。

8.1.4. エフェクトとバスバイパス (On/Offスイッチ)

すべてのエフェクトにはOn/Offスイッチがあり、エフェクトをバイパスするのに使えます。エフェクトを オフ (バイパス)にしても、オーディオ信号はそのエフェクトを通過しますが、そのオーディオ信号には何 も手を加えません。これにより、そのエフェクトをかけた時とオフにした時のA/Bチェックが簡単に行え ます。

PigmentsのバスにもOn/Offスイッチがあります。バスをオフにするということは、そのバスに入った信号を他のバスに送らなくするということになります。

エフェクトやバスをオフにすると、そのパラメーターはグレーアウト表示になり、そのエフェクトやバス がオフになっていることが分かりやすくなっています。その状態でも、そのエフェクトやバスの各種パラ メーターのエディットはできます。

8.1.5. エフェクトの接続順を変更する

エフェクトの接続順を変更して音の変化をチェックするのも簡単です。移動させたいエフェクトの4方向 の矢印アイコンをクリックしてドラッグするだけで変更できます。

8.1.5.1. 同一エフェクトバス内でのスワップ

同一エフェクトバス内ではエフェクトを別のスロットにドラッグするだけで接続順を変更できます:

移動させたいエフェクトのサブディビジョン (スロット) から別のエフェクトの4方向矢印アイコンに向け てドラッグします。カーソルをリリースすると接続順の変更が完了します。

8.1.5.2. エフェクトバス間でのスワップ

エフェクトを別のエフェクトバスのスロットにドラッグすることも可能です:

- / //M		
FX : BUS A	Compressor TX: BUS B	
Compressor 💠 Reverb 💠	None None	

移動させたいエフェクトのエフェクトタブから別のエフェクトの4方向矢印アイコンに向けてドラッグし ます。カーソルをリリースすると接続順の変更が完了します。

8.2. バスA/Bルーティング

各エフェクトバスは単体でもパワフルですが複数のバスを組み合わせるとさらにパワフルになります。バ スエフェクトのAとBは画面右のBus A/B RoutingセクションにボタンでA->Bのシリーズ接続やその逆、あ るいはパラレルにできます。

正逆どちらかのシリーズ接続にした場合、最大6個のエフェクトを直列につないで音色を加工できます。

エフェクトA/Bバスとは別にFXセンドバス [p.103]にも同じオーディオ信号を送ってさらに加工することができます。センドバスにも3つのエフェクトスロットがあり、多彩なエフェクトをかけることができます。

8.2.1. シリーズ

オーディオ信号はバスAからバスBに入り、アウトプットへ出力されます。

8.2.2. パラレル

オーディオ信号はバスAとバスBに別々に入り、それぞれアウトプットへ出力されます。

8.2.3. 逆シリーズ

オーディオ信号はバスBからバスAに入り、アウトプットへ出力されます。

各エフェクトの内容につきましては後述します。

8.3. FXセンドタブ

FXセンドバスにもFXバスA/Bと同様に3つのエフェクトスロットがありますので、バスA/Bと同じことができます。

各エフェクトの内容につきましては後述します。
8.4. FXコンフィギュレーション

以下の図はPigmentsのエフェクト構成をヴィジュアル化したものです。

8.4.1.2つをシリーズに、1つをパラレルに

バスA/Bはシリーズに、センド/リターンバスはパラレルに配置

上図の例ではルーティングオプション [p.103]でバスA/Bをシリーズ (*シリーズ*または*逆シリーズ*) に配置 しています。

エンジンから出力されたオーディオ信号はフィルターとアンプを経由してA/Bバスとセンドバスに同時に入ります。上図の例ではA/Bバスがシリーズ接続 (A->BまたはB->A) に、センドバスはパラレルに配置されています。

この状態の場合、エフェクトは6+3配置になります。A/Bバスで最大6個のエフェクトを直列に、それと並行して最大3個のエフェクトをセンドバスで使用できます。A/Bバスとセンドバスの出力は最終段でミックスされます。

8.4.2.3つをパラレルに

全エフェクトバスをすべてパラレルに配置

上図ではルーティングオプション [p.103]でA/Bバスがパラレルに配置されています。

エンジンから出力されたオーディオ信号はフィルターとアンプを経由してA/Bバスとセンドバスに同時に 入ります。上図の例では3つのFXバスがすべてパラレル接続になっていますので、各バスで最大3個のエ フェクトを同時使用できます (3+3+3構成)。各バスの出力は最終段でミックスされます。

8.5. エフェクト・インサート/センドセクション

インサートとセンドの両セクションで各FXバスの出力レベルを調節します。

8.5.1. バスA/Bボリューム

Bus AとBus BパラメーターでFXバスA/Bとセンドバスの相対的な音量バランスを調節します。このパラメ ーターの動作はバスA/Bの接続設定により次のように変化します:

- シリーズの場合:バスAの出力でバスBの入力がオーバーロードしている場合、バスAの出力 レベルを下げてバスBの出力を上げてバランスを取ります。A/Bバスが逆シリーズ接続で同様 のケースではバスBの出力を下げてバスAでの歪みを解消します。
- パラレルの場合:バスA/Bの出力レベルは独立していますので片方を下げてもそのバスの音量が下がるだけで、他方のバスには影響しません。

】♪: FXバスA/Bがシリーズ接続の場合、どちらかの出力レベルをゼロ (-70.0dB) にすると音がまったく聴こえなくな ります。

8.5.2. センドバス:センド

センドバスのSendノブでFXセンドバスに送られる信号レベルを調節します。これはシンセタブのアウト プットセクション [p.181]にあるSend Levelノブ [p.99]でコントロールされるのと同じパラメーターで す。つまり、どちらかをエディットするともう一方にもそれが反映されます。設定値はロワーツールバー にVoice Send Levelとして表示されます。

8.5.3. センドバス: リターン

センドバスのReturnノブでFXセンドバスの出力レベルを調節してFXバスA/Bとの相対的な音量バランス を取ります。

】 ♪: 3つすべてのFXバスの出力レベルをゼロ (-70.0dB) にすると音が出なくなります。エフェクトのかかっていない ドライ信号を聴くには、エフェクトスロットをNoneに設定するか、各エフェクトのDry/Wetノブを100%ドライに設定 します。

8.6. エフェクトリスト

-

エフェクト	内容
None	エフェクトスロットがバイパスになります
Multi Filter	色々なタイプとスロープがあるフィルターです。一部はレゾナンス付きです
Param EQ	5バンドのフルパラメトリックEQ
Compressor	細かな設定ができ、レベルメーター付きのコンプレッサー
Distortion	サウンドにハッキリとしたエッジや歪みを加えます。オーバードライブよりもチューブ的なサウンドです
Overdrive	トーン付きでサウンドに歪みを加えます。ディストーションよりもソリッドステート的なサウンドです
Wavefolder	波形のピーク部分を下側に折り畳みます
BitCrusher	ビットデプスを16ビットから1.50ビットまで落とせます。サンプルレートも落とせます
Chorus	穏やかなコーラスサウンドからうねりの大きなウォブルサウンドまで多彩なコーラス
Flanger	豊富なパラメーターでメタリックなフランジサウンドを多彩に作れます。モジュレーション周期はシンク可 能
Phaser	回転感のあるフェイズエフェクト
Stereo Pan	左右間の音像移動を多彩にコントロール。シンク機能付き
Delay	入力音を繰り返すディレイエフェクト。ディレイタイム、ファインチューニング、トーンやステレオ感の広 がり、ピンポンディレイやシンク機能を搭載
Tape Echo	モデリングによるテープディレイ。ディレイタイム、ファインチューニング、インテンシティ、ステレオの 広がり、ピンポン、シンク機能付き
Reverb	スモールルームからラージホールまで、空間的な残響音を作ります

8.7. エフェクトパラメーター

♪:モジュレーションのルーティングは簡単に行なえます。パラメーターにマウスオーバーすると表示される小さな"+"アイコンをクリックします。画面中段のモジュレーションストリップにスライダーが表示され、選択したパラメーターにかかる各モジュレーション量を調節できます。

8.7.1. Multi Filter

マルチフィルター・エフェクト

2系統のフィルターでも足りないという場合はFXセクションのマルチフィルターがあります。スロープは 12, 24, 36dB/octから選択でき、ローパス、ハイパス、バンドパスの各モードの他、CombFB (フィードバ ック) とCombFF (フィードフォワード) のコムフィルター2種類も使用できます。

このエフェクトで最終的なサウンドをフィルタリングしたり、一部の倍音を強調したりすることができま す。もちろん、どのパラメーターも自在にモジュレーションできます。

パラメーター	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Freq / Comb Freq	フィルターの周波数を設定します:20-20kHz (LP/HP/BP)、20-2kHz (CombFB/FF)
Q	フィルター周波数付近の帯域を強調する量を調節します
Mode	フィルタータイプの選択
Slope	数値フィールドをクリックして上または下にドラックするとフィルターのスロープを選択できます (LP/ HP/BPのみ)

8.7.2. Param Eq

パラメトリックEQ

5バンドのフルパラメトリック・イコライザーです。イコライザー (EQ) は特定の周波数帯域の音量を上げたり下げたりすることができます。一般的にパラメトリックEQには音量を上下させたい帯域の幅を調節するQやWidthといったパラメーターがあります。

パラメトリックEQの多くでは最低/最高帯域用にシェルヴィングEQが付いていますが、Pigmentsではそれらを含めた5バンドすべてでQの調節ができます。

EQカーブ画面にある小さなサークルは、その下の各パラメーターの設定に対応して位置が移動します。 サークルをドラッグすることでそのバンドの周波数とゲインを同時に調節するこもできます。サークルを 右クリックして上下にドラッグするとそのバンドのQ(帯域幅)の調節ができます。

EQカーブ画面下のタブをクリックして、そのバンドの各種パラメーターを調節することもできます。

パラメーター	内容	
Curve visualizer	EQカープを表示します	
Low / Peak X / High fc (frequency)	各バンドの中心周波数を設定します:Low 50-500 Hz; Mids 40-20kHz; High 1k-10kHz	
Low / Peak X / High gain	各バンドのゲインを調節します	
Low / Peak X / High Q	各バンドの帯域幅を調節します:Low/Highレンジ: 0.100 - 2.00; Peak Xレンジ: 0.100 - 15.0	
Scale	全バンドのゲインを同時に調節します	

8.7.3. Compressor

コンプレッサー

コンプレッサーは一般的に、音のレベルを均一化させたい場合に使用しますが、それ以外の用途もありま す。

例えば入力音のアタック部分をオーバーロードから防いで次のエフェクトに音を引き継ぐという使い方 もありますし、短いディケイをある程度長く伸ばしたい場合にも便利です。

パラメーター	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Threshold	コンプレッション効果が効き始めるレベルを設定します
Ratio	入力音がスレッショルドに達した時に適用されるコンプレッション率を設定します
Makeup	コンプレッションにより下がる音量を自動的に引き上げます
Attack	入力音がスレッショルドに達した時からコンプレッションが動作するまでの時間を調節します
Release	コンプレッサーが開放されるまでの時間を調節します
Output Gain	コンプレッサーからの出力レベルを調節します。主にコンプレッションで音量が下がった場合に使用し ます
Reduction meter	コンプレッサーの動作時にゲインリダクション量を表示します

8.7.4. Distortion

ディストーション

サウンドにハッキリとしたエッジや歪みを加えます。チューブアンプ的なサウンドキャラクターです。

パラメーター	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Drive	ディストーション (歪み) の量を調節します
Out Gain	Driveの設定によって上がった音量を調整します

8.7.5. Overdrive

オーバードライブ

オーバードライブは"ファズ的な"歪みを付けるエフェクトです。トーンノブでエフェクト音の明るさを調 節できます。ソリッドステート回路をベースにモデリングしています。

パラメータ ー	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Drive	オーバードライブ量を調節します
Tone	高音域のレベルを調節してスムーズなトーンからハーシュ感のあるエッジまで色々なキャラクターを作れま す
Level	Driveの設定によって上がった音量を調整します

8.7.6. Wavefolder

ウェーブフォールダー

ウェーブフォールディングは入力音の波形のピークを下向きに折り畳んで高音域にユニークな変化を作り出すエフェクトです。

パラメーター	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Drive	ウェーブフォールディング効果の強さを調節します
Out Gain	Driveの設定によって上がった音量を調整します
Туре	ウェーブフォールディングのシェイプをサインまたはハードに切り替えます

8.7.7. BitCrusher

ビットクラッシャー

ビットデプスを下げるエフェクトは色々に音を破壊していくエフェクトです。ビット数を下げていくと、 入力音の解像度が徐々に低下していきます。

ダウンサンプリングも音を破壊していくもう1つの方法です。サンプルレートを下げていくと、高次倍音 にエリアシング (折り返しノイズ) が生じ、サブハーモニクスも生じます。Downsampleパラメーターを 80.0xにすると、入力音の1/80という超低サンプルレートになり、ローファイの極みのようなサウンドに なります。

パラメーター	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Bit Depth	ビット数を下げて入力音の振幅変化を粗くしていきます。レンジ:1.50 - 16.0ビット
Downsample	サンプルレートを下げて荒れた音色にしていきます。レンジ:1.00x - 80.0x

8.7.8. Chorus

コーラス

コーラスエフェクトはフランジャーと似ていますが、ディレイタイムがフランジャーより長めになってい る点が異なります。その結果音色変化は比較的穏やかですが、変わったエフェクトとしても使えます。

パラメーター	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Delay	コーラス音のディレイタイムを設定します
Depth	コーラス音のうねりの深さを調節します
Frequency	うねりの周期を調節します
Feedback	フィードバック量を調節します
Voices	コーラスに使用するディレイラインの数を選択します。各ディレイラインはスタート位相が異なります
Square	コーラスのうねりの波形をサイン波または矩形波に切り替えます
Stereo	コーラスの出力モードをモノまたはステレオに切り替えます

8.7.9. Flanger

フランジャー

フランジャーは入力音とエフェクト音をミックスして使用するのが一般的です。エフェクト音は入力音に ごく短いディレイをかけ、そのディレイタイムが徐々に変化します。これにより"コムフィルター"効果が スウィープします。

パラメータ ー	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Delay	エフェクト音のディレイタイムを設定します。設定によって音色が大きく変わります
Depth	うねりの深さを調節します
Rate	うねりの周期を調節します。周期はフリーランかシンクが選択できます
Feedback	フィードバックを上げるとハーシュ感や共鳴音が大きくなります。最大レベルは自己発振を防ぐため99%まで となっています
LP Freq	エフェクト音の高音成分の量を調節します
HP Freq	エフェクト音の低音成分の量を調節します
Negative	フランジャーのフィードバックのタイプをサブトラクティブまたはアディティブに切り替えます
Stereo	フランジャーの出力モードをモノまたはステレオに切り替えます
Triangle	うねりの波形をサイン波または三角波に切り替えます

8.7.10. Phaser

フェイザー

フェイザーは入力音を位相をシフトした音とダイレクト音に分け、再びミックスするエフェクトです。エ フェクト音にモジュレーションをかけるとノッチコムフィルターが周波数スペクトラムをスウィープ し、特徴的なうねりのあるサウンドになります。

パラメータ ー	内容
Dry/Wet	入力音とエフェクト音のバランスを調節します
Frequency	モジュレーション効果をかける中心帯域を設定します
Feedback	フェイザーのレゾナンス量を調節します
LFO Wave	うねりの波形を次の6種類から選択できます:サイン波、三角波、ノコギリ波、ランブ波、矩形波、サンプル &ホールド
LFO Amnt	うねりの深さを調節します
Rate	うねりの周期を調節します。シンク機能も使用できます
N Poles	フィルター特性の急峻さを設定します
Stereo	フェイザーのステレオ感を調節します。最低値でモノになります

8.7.11. Stereo Pan

ステレオパン

入力音の音像をLFOで左右間に揺らすエフェクトです。センター定位からわずかに左右に揺れる効果から、左右間いっぱいに揺れる派手なパンニングもできます。

パラメーター	内容
Amount	センター定位から離れていく量を調節します
Rate	音像移動する周期を調節します。フリーランかシンクが選択できます

8.7.12. Delay

ディレイ

ディレイはリピートエコーによりステレオ間に空間的な広がりを付けるエフェクトです。リズミックな設定にしてグルーヴのアクセントとして使うこともできます。このエフェクトはステレオイン、ステレオアウト仕様で、フルステレオ動作に対応しています。

パラメー ター	内容		
Dry/Wet	入力音とエフェクト音のバランスを調節します		
Time / Time Div	ディレイタイムを設定します。シンク機能も使用できます		
Fine	Time/Time Divノブで設定したディレイタイムを±30msの範囲で微調整します。ノブが12時の位置で0ms (微調 整なし) になり、そこから右へ回すとタイムが長くなり、左へ回すとタイムが短くなります		
Feedback	ディレイのリピート数を調節します		
HP Freq	ディレイ音の低音成分の量を調節します。値が上がると低音成分が減少します		
LP Freq	ディレイ音の高音成分の量を調節します。値が上がると高音成分が減少します		
Stereo Width	ディレイ音の左右間の広がりを調節します		
Ping Pong	ディレイ音が左右に飛び交うピンポンディレイにする場合に、このボタンをオンにします		

8.7.13. Tape Delay

テープディレイ

テープディレイはディレイと同様のエフェクトですが、ディレイ音をアナログのテープで作っているところが相違点です。Pigmentsのテープディレイは、モデリングによりアナログテープのループと歪み回路を再現し、通常のディレイとは大きく異なる素晴らしいアナログスタイルのディレイエフェクトになっています。

パラメー ター	内容	
Dry/Wet	 入力音とエフェクト音のバランスを調節します	
Input Vol	入力レベルを調節します。レベルを上げていくと、ディレイ音に独特のテープサチュレーションが生じ、さらに 上げるとディストーション的な歪みになります	
Time / Time Div	ディレイタイムを設定します。シンク機能も使用できます	
Fine	Time/Time Divノブで設定したディレイタイムを土30msの範囲で微調整します。ノブが12時の位置で0ms (微調 整なし) になり、そこから右へ回すとタイムが長くなり、左へ回すとタイムが短くなります	
Intensity	ディレイ音のフィードバック量 (リピート数) を調節します	
Stereo Width	ディレイ音の左右間の広がりを調節します	
Ping Pong	ディレイ音が左右に飛び交うピンポンディレイにする場合に、このボタンをオンにします	

8.7.14. Reverb

リバーブ

リバーブは無数の反響音を発生させ、それらが徐々に減衰していくエフェクトです。入力音が部屋や広大 な空間で鳴っているような効果を演出します。

パラメーター	内容			
Dry/Wet	入力音とエフェクト音のバランスを調節します			
Input LP	リバーブをかける前段階で入力音の高音成分の量を調節します			
Input HP	リバーブをかける前段階で入力音の低音成分の量を調節します			
Pre-delay	入力音にリバーブがかかるまでの時間 (プリディレイ) を設定します			
Decay	リバーブ音が消えるまでの減衰時間を調節します			
Size	空間サイズを調節します:左へ回すと空間が小さくなり、右へ回すと大きくなります			
Damping	amping リバーブ音の高音成分の減衰量を調節します			
MS Mix	リバーブ音の左右間の広がりを調節します			

9. シーケンサータブ

現代の音楽制作においてステップシーケンサーとアルペジエイターの重要性は、いくら強調しても強調 し足りないということはないでしょう。クリエイターにとっても、そのオーディエンスにとっても、刺激 的で興味をそそるものがあります。リズムとサウンドを刻々と相互作用させていく手法により、音楽を俯 瞰して多元的に捉えることができます。

しかし残念なことに、この種の手法では機材にディープな機能がなくて表面的な機能しかない場合、マン ネリ化してしまうリスクが常に潜んでいます。とは言えディープな機能を大量に投入しても、それが使い にくくては創造性の翼を広げることは難しくなってしまいます。

使いやすくてしかもディープな機能を目指して、Pigmentsのシーケンサーとアルペジエイターは使い手の入力操作と偶発的なフレーズ生成の巧みなバランス取りを実現しました。Pigmentsなら好きなだけ手を入れても、ほんの少しだけ手を加えるだけでもあなたの音楽を進化させることができます。

9.1. Arp/Seqの共通機能

9.1.1. Arp/Segモード選択

アルペジエイターまたはシーケンサーいずれかのモードに入るにはArpボタンまたはSeqボタンのいずれ かをクリックします。再生は、モードに入ってから最初のMIDIノートを受信すると始まります。停止する には、Holdボタンがオフになっていることを確認し、キーボードから手を離すなどノートをオフにしま す。キーボードを弾いたりMIDIノートを受信した時にシーケンスやアルペジオを動作させたくない場合 は、Offボタンをクリックします。

♪: アルペジエイターとシーケンサーとの機能の違いの1つに、最上部のトラックがあります。シーケンサーでは各 ステップのピッチを設定できますが、アルペジエイターではこれを行いません。アルペジエイターの各ステップのピ ッチはキーボードを弾いたり、DAW等からのMIDIノートで指定するからです。 パターンの長さは最長16ステップまでです。長さは1ステップから16ステップの範囲で設定できますの で、テンポとのシンク設定を色々に変えることで様々な拍子にすることができます。

パターン全体の長さを変更するには、パターンの最終ステップにある縦の太いグレーの線にマウスオー バーします。するとカーソルが左右の矢印に変化します。

次にその線をクリックして変更したい長さまで左または右にドラッグします。必要な長さまでドラッグし ましたら、カーソルを放します。

パターン内の各トラックの長さも変更できます。これはポリリズムモード [p.131]と呼ばれる機能です。

9.1.3. トラック

Arp/Seq画面で最大のセクションは6つのトラック表示で、各トラックで別々のタイプのデータを操作でき、それをアルペジエイターやシーケンサーに送ってフレーズや音色を変化させます。ここでは各トラックについて簡単にご紹介します。

9.1.3.1. ピッチ (シーケンサーのみ)

ピッチトラックの各ステップには1オクターブ内でのピッチ情報が半音単位で入ります。オクターブ情報 は別のトラックで入れます (次のセクションをご覧ください)。

デフォルト設定ではピッチトラックの各ステップの値は半音階 (12音) に沿っています。これらの値は15 種類のスケール [p.135]から1つを選択してフィルタリングすることができます。

♪: Arpモードではピッチを入力したMIDIデータで指定しますので、ピッチトラックはありません。そのため Random/Resetウィンドウの代わりに、このトラックではアルペジエイターモード・メニューが表示されます。このメ ニューには6種類のオプションがあり、アルペジエイターで発音する各ノートの順番を設定できます。

9.1.3.2. オクターブ

オクターブトラックの各ステップには上下2オクターブの範囲のオクターブ情報が入ります。各ステップ のピッチ情報は上述のピッチトラックで設定します。

9.1.3.3. ベロシティ

ベロシティトラックの各ステップには1から127のベロシティ値が入ります。これによる音色等の変化 は、入力したMIDIノートとVelocity Random/Resetウィンドウ [p.127]の"As Played"パラメーターの設定 との組み合わせにより変わります。

9.1.3.4. トリガー・プロバビリティ

トリガー・プロバビリティは各ステップが発音する確率を設定するパラメーターです。パターン内の全ス テップを常に発音させたい場合は、各ステップのこの値を100%に設定します。全ステップを常に発音さ せたくない場合は、各ステップのこの値を0%に設定します。

9.1.3.5. ゲート・レンクス

このパラメーターで各ステップの長さを別々に設定できます。レンジは1ステップのフルの長さの5%から 4倍の400%までです。

このパラメーターによる変化は、ロワーツールバーにあるPlay Mode設定により変わります。例えばPlay ModeがPoly 16の場合、100%以上に設定したステップは設定したゲート・レンクスに達するまで音が伸 びます。Play ModeがMonoまたはLegatoの場合は、ゲート・レンクスを100%以上に設定していて、その 長さに達していなくても、次のステップが発音された瞬間に前の音が途切れます。これはモノフォニック のリード音色をレガート奏法で弾いた場合に起こることと同じです。 このパラメーターは"slew" (スルー) とも言われるものです。演奏中のステップのピッチから次のステップのピッチに達するまでのスピードをコントロールします。

例えばステップ2のピッチがC、ステップ3のピッチがGでスライドの値が50.0%の場合、ステップ3の長さ の50%を使ってピッチがCからGに上がります。ステップ3のスライド値が100%の場合、ステップ3の長さ 全部を使ってピッチがCからGに上がります。スライドにかかる長さはゲート・レンクスの設定が100%未 満の場合でも影響を受けず、ステップ4が発音するまでにステップ3で設定したピッチに到達します。

上記の例でステップ2にピッチ情報が入っていない場合は、ステップ3のスライド値は無効となります。 これはスライドしたくても*出発点*がないためです。

9.1.4. トラックのエディット

トラックのステップ内の値を変更するには、そのステップのバリューバーをクリックして上または下に ドラッグします。

次の2つのセクションでは多くのステップを素早くエディットする方法をご紹介します。

9.1.4.1. トラックに沿ってドラッグする

同一トラック内の各ステップの値を"ペイント"するが如くエディットできます。これはトラック内のステ ップのバリューバーをクリックしてトラック内を横にドラッグすることでできます。やや下向きにドラッ グすれば、各ステップの値が徐々に低下していくように入力できます。

勢い余って別のトラックにはみ出てしまっても大丈夫です。マウスボタンを放さない限り、エディットさ れるのは元のトラックの値のみです。

↓: ピッチトラックでドラッグしてピッチ情報を入力した場合、その結果はScaleパラメーター [p.127]でフィルタ リングされます (シーケンサーのみ)。

9.1.4.2. トラックのプロポーショナル・エディット

例えばステップ1から16にかけてベロシティを上げていきたいのですが、ベロシティの最大値127の時点 でクレッシェンドを終わりにしたいとします。この場合、コンピュータのキーボードのShiftキーを押し てから任意のステップ (この例の場合ではベロシティを最大値にしたいステップ)のバリューバーをクリ ックします。クリックしたままの状態で上にドラックしてバリューバーを最大値にします。この操作でベ ロシティ値が徐々に上がっていくなど、トラック内の全ステップの値をプロポーショナルにエディットで きます。

♪: この操作を行う場合、Shiftキーを押してからバリューバーをクリックするのが必須です。バリューバーをクリ ックしてからShiftキーを押しても、変化するのはそのステップの値だけしか変化しません。

ピッチトラックでプロポーショナル・エディットを行った場合、その結果はScaleパラメーターでの設定 [p.127]によって変化します (シーケンサーのみ)。

9.1.5. ランダム/リセットコラム

これまでの機能でまだ物足りないようでしたら、猿が永遠にタイプし続けるよりも遥かに楽しい機能を ご紹介します。ランダム/リセットコラムを見ていきましょう。

9.1.5.1. ランダム/リセットの共通機能

各トラックにはデータをランダマイズする機能があり、その度合いはトラックごとに設定できます。トラ ックごとの設定に加えて、全トラックが1小節内で、小節の変わり目で、あるいは複数小節に1回の割合で ランダマイズするグローバルな確率を設定できます。さらに、Randomize Regenボタンをクリックする ことでいつでも好きなときにランダマイズを発動できます。もうどこを見てもランダムです!

トラックをリセットする

1つのトラックをデフォルトの"プレーンバニラ"な状態からスタートするには、そのトラックのリセット ボタンをクリックします。するとそのトラックの各ステップはデフォルト値にリセットされます。

ランダマイズ量を設定する

各トラックは0 (ランダマイズなし) から1.00 (フルにランダム) までの範囲でランダマイズ量を設定できま す。ダイス (またはそのとなりの矢印) をクリック+ドラッグしてランダマイズ量を設定します。

ランダマイズさせたトラックの各ステップの値を残しておきたい場合は、ランダマイズセクションにあ るApplyボタンをクリックします。

Ctrlキーを押しながらまたは右クリックをしながらドラッグするとランダマイズ量を微調整できます。このようにランダム機能はダイスを1,000回振っているようなもので、振るたびに10の95乗(1の後ろに0が96個並ぶ数)の組み合わせから1つを出していることになります。観測可能な宇宙の基本粒子の数よりも多いです、ダークマターを除けば。

これはシーケンサーでのことで、アルペジエイターではランダマイザーが1つ少ないので可能な組み合わ せの数は少し減ります。1,000種類以上のMIDIノートの組み合わせができれば、シーケンサーでの組み合 わせ数を超えるかも知れません。その時はあなたこそランダマイザーです。 次の2つのトラックにはさらに別の機能がランダム/リセットウィンドウにあり、それぞれのトラックのデータに変化を付けることができます。

ピッチトラック:スケール (シーケンサーのみ)

スケールメニューは15種類から選択でき、ランダマイズしたピッチトラックの結果をそのスケールに合わせてフィルタリングします。スケール選択によるフィルタリングはピッチトラック内をドラッグして [p.125]値を入力した場合や、1トラック全体をプロポーショナル・エディット [p.125]した場合にも適用 されます。

スケールメニューの最下部には"Scale Editing" displayがあります。これは、選択したスケールの構成音 と、ランダム使用時に生じる構成音の発生頻度の重み付け ("strong"は発生頻度が高く、"weak"は低くな ります。"neutral"はその中間です)が表示されます。この表示は14種類のプリセットスケールを選択して いる場合はグレーアウトになります。プリセットスケール選択時は、そのスケールの構成音とその重み付 けが表示されるだけとなります。この"Scale Editing" displayが使用でき、エディットもできるのは、ス ケール選択で"Custom"を選んだ場合のみです。

このチャプターの最後に各種スケールとその構成音 [p.135]の表を掲載しましたのでご参照ください。

ピッチトラック:Transpose (シーケンサーのみ)

ピッチトラックにはTransposeノブがあり、ピッチトラック全体を±24半音の範囲でトランスポーズさせ ることができます。Pigmentsの他のパラメーターと同様、このノブもモジュレーションをかけることが でき、音楽的に面白く、時には予想も付かなかったような結果を招くこともあります。但し、スケールメ ニューで選択したスケールはトランスポーズをしても有効のままですので、トランスポーズした音程は選 択したスケールの構成音に最も近い音程で発音します。

ベロシティトラック:As Played

このパラメーターでは、各ステップに入っているベロシティ値をそのまま出力するか、パターンをトリガーした時のベロシティ値に応じてスケーリングするかを設定できます。

例えばベロシティトラックの全ステップの値が64で、"As Played"の値が0.00%の場合、パターンをトリ ガーする (キーボードを弾く) 時のベロシティに関係なく常にベロシティ64で演奏します。ところが、"As Played"の値を1.00%にしてベロシティ値100でトリガーすると、パターンの各ノートはベロシティ値100 で演奏します。

同様に、ベロシティ値がV字型に推移する(高い値から一旦低くなって再び高い値になる)パターンで"As Played"の値を0.00%に設定した場合、V字型の推移はそのまま変わらず演奏します。しか し"AsPlayed"の値を1.00%にするとV字型の推移は無視されます。

中間的なベロシティ値ではトリガー時のベロシティ値やパターンに入っているベロシティ値、同時に弾 いたノート数によって結果は変化します。このように条件によって結果は色々に変化し、表現力のあるプ レイや変わった演奏ができます。

9.1.6. ロックコラム

ランダムさせた結果があまりにカオス過ぎた場合や、シーケンスやアルペジオの一部を変更せずそのまま にしておきたい場合、そのセクションにロックをかけてランダマイズを適用させないようにすることが できます。手順は、各コラムの上にあるロックアイコンをクリックするだけです。コラムがロックされる と、そのコラムに入っているパラメーターにはランダマイズが適用されません。その状態でも、各ステッ プやその設定値はエディット可能で、ランダマイズだけが適用外となります。

9.1.7. ランダマイズ・セクション

ランダマイズ・セクションには作成したパターンの設定を好きなだけどんどん壊していけるパラメータ ーが2つあります。この2つは各トラックのランダマイズの設定に応じて各ステップの値をランダムに変 化させます。そのためトラックのランダマイズ設定が0.00の場合はランダムな変化は起こりません。この 2つのパラメーターを使用しても何も変化が起きない場合は、トラックのランダマイズの設定を上げてみ てください。

9.1.7.1. ランダマイズ・リジェン

パターンに手動でランダムな変化を付けたい時はランダマイズ・セクションのRegen (リジェネレート) ボ タンをクリックします。これはその時のステップの値をサイコロで決めるのと同じことになります。

どのような結果になるかはその時次第です。ランダマイズの値を高く設定するほど予想外の変化が起こり やすくなります。

Regenボタンをクリックしても変化させたくないトラックがある場合は、そのトラックのランダマイズの 値を0.00に設定します。

9.1.7.2. ランダムした結果を採用する

ランダム・リジェンをした結果、残しておきたい良い結果が出ましたら、Applyボタンをクリックして、 ランダムで生成した値をそのパラメーターの正規の値として変換できます。この時、ランダムバリューが 0に設定されますので、ランダム・リジェンを再開してもその値は変更されず、同じ状態を維持します。

9.1.7.3. シーケンサー・オートリジェン

パターンの長さは最長で16ステップですが、シーケンサーのAuto Regenの設定でもっと長く聴こえるようにすることができます。ここでの設定で最長8小節にわたって徐々にランダム化していくことができます。

Auto Regenの設定を1/2 barにすると1小節で2回ランダマイズが発生します。ここの設定をどれに選択してもパターンを繰り返し演奏していくと、その設定でランダム化していきます。

9.1.8. レイトセクション: Sync, Swing, Hold

パターンはフリーランのほか、シンク設定でDAWと同期させることができます。選択できるオプション はBPM (フリーラン), Sync binary, Sync triplet, Sync dottedです。

BPMは"beats per minute" (1分間での拍数) のことで、これを選択した場合は30から300BPMの範囲でパ ターンのテンポを設定できます。

Syncの各オプションではステップの長さを1/2 (2分音符) から1/64 (64分音符) までの間で設定できます。 tripletは三連符のことで1/2.tや1/4.tというように、ノブの近くに表示される値に't'の文字が付きます。 dottedは付点のことで1/2.dや1/4.dというように表示されます。

9.1.8.1. スウィング

パターンの雰囲気が堅苦しい感じがしたりメカニカルな感じに過ぎるようでしたらスウィング機能を使ってみるのも手です。Swingパラメーターは50%でストレートな8分音符、66.7%で三連符、75%で付点8 分音符と16分音符のペアというように、"シャッフル感"のあるグルーヴにできます。

音楽理論を学んだことのある方でしたら下図が思い浮かぶと思います:

Swingパラメーターは50.0から75.0%の範囲を0.1%ステップで調節できます。Pigmentsは高精度のグル ーヴマシンなのです。

9.1.8.2. Arp/Seqレイトのモジュレーション

Rateノブにマウスオーバーするとブルーの+アイコンが表示されます。その+アイコンをクリックすると シーケンサー/アルペジエイターのRateパラメーターをモジュレーションできるソースが表示されます。 スライダーを上げるとモジュレーション・ルーティングが接続されてモジュレーション量を調節したり、 元からルーティングされているモジュレーション量も調節できます。

方法などの詳細はモジュレーション・ルーティング [p.140]をご覧ください。

9.1.8.3. Holdボタン

Holdボタンにはサステイン・ペダルのような働きがあります:

- シーケンサーモード: Holdがオンになっている間、シーケンスを繰り返し演奏します。
- アルペジエイターモード: MIDIノートを受信している間、別のMIDIノートを受信するとその ノートもアルペジオになります。すべてのMIDIノートがオフになり、次のMIDIノートを受信 すると新たにアルペジオ演奏を始めます。

9.1.9. ポリリズムモード

この機能はメロディとリズムの思いも寄らない面白い組み合わせができる機能です。

9.1.9.1. 何をするモードなのか?

パターン内の各トラックはすべて9ステップや16ステップなど同じ長さというのが一般的です。この場合、例えばスライドはパターンを繰り返し演奏させてもループ内の必ず同じ位置でスライドが動作します。

ですがポリリズムモードでは各トラックを別々の拍子にできるのです。つまり、最大6つのトラックをす べてバラバラの長さにでき、それを同時に演奏させることができるということです。パターンを繰り返す たびに各トラックの相互作用が変化していきます。 PolyRボタンでポリリズムモードのオン/オフを切り替えます。オンになるとボタンの外周がブルーに点灯し、オフの場合はグレーになります。

他にもポリリズムモードに入ったことが分かるヴィジュアル上の変化があります:ポリリズムモードが オフの場合、トラックの終端にあるグレーの縦線はつながった1本の線に見えます。この状態からPolyR ボタンをクリックすると1本に見えていたグレーの線がトラックごとに分かれます。つまり各トラックが 別々の長さになったことが分かります。

ポリリズムモードをオンにすると、各トラックの終端のグレーの線を1から16ステップの間でドラッグして長さを変更できます。

5 🔒	6 🔒	7 🔒	8 🔒	9 🔒	10 ⊜	11 ≙	12 🔒	13 🔒	14 ≙	15 ≙	16 ⊜
C#		-	-		-0-	-0-				—C#	
					-						
-	·				_			_	_		
_	_	_			_	_					
inc 3	Rand 1	Rand 2	Rand 3	Comb 1	Comb 2	Comb	3 M	1	W 2	М 3	M 4

他にもPolyRボタンで起こる変化はあります:異なる長さのトラックが混在している場合、PolyRボタン をオンにすると各トラックは設定した長さになり、オフにすると全トラックが同じ長さになります。再び PolyRボタンをオンにするとトラックそれぞれの長さに戻ります。

♪:ポリリズムモードがオフの場合、ピッチトラックの長さがパターンの長さになります。

9.1.9.3. リアライン

各トラックの長さを設定すると、それが*無限に*ループしますが、Realignパラメーターで設定したタイミ ングでトラックを先頭にリセット (仕切り直し) することができます。タイミングは1/2小節、1小節、2小 節、4小節、8小節の中から選択できます。

9.1.10. MIDIアウトプット

PigmentsはMIDIアウトが可能ですので、Seq/Arpセクションで作成したパターンで他のヴァーチャルイ ンストゥルメントをコントロールすることができます。これにより、音作りの上で面白い効果を生み出し たり、古くなったヴァーチャルインストゥルメントに新たな生命を吹き込むこともできます。

9.2. アルペジエイター (Arp)

】 ♪: Octave, Velocity, Trig Probability, Gate Length, Slideの各トラックの機能はこのチャプターの冒頭で [p.122]ご 紹介しましたとおりアルペジエイターとシーケンサーで共通です。ランダマイズ [p.128]、レイト [p.130]、ポリリズム [p.131]の各機能も同様です。このセクションではアルペジエイター独自の機能をご紹介します。

アルペジオはコードの構成音が同時に聴こえるのではなく、それぞれが別々のタイミングで聴こえるため、コードの輪郭線ようなものと言えます。バッハのプレリュード第1番ハ長調からエディ・ヴァン・ヘイレンのEruptionのハンマリングオンに至るまで、アルペジオが楽曲の中核を担っている名曲がたくさんあります。

使い方によってはアルペジエイターはステップシーケンサーよりも即興的に使えます。キーボードで押さ えるコードの種類やボイス数を自在に変えることで、アルペジオのフレーズを変えられるからです。単音 だけでもそれを繰り返し演奏しますし、コードならその構成音が交互に鳴ります。クリエイティブな可能 性は無限です。

9.2.1. アルペジオモード

アルペジオのモードはシーケンサーのピッチトラックに相当する位置、ランダム/リセットコラムの上に あります。ドロップダウンメニューを開くと6種類のパターンから1つを選べます。

アルペジオモードメニュー

上図の左上から順に次のようなパターンが入っています:

モード	内容
As Played	コードの構成音を弾いた順にアルペジオになります
Up	押さえたコードの最低音から最高音に向かって上昇するアルペジオになります。新たなノートを追加する とその音がパターンに挿入されます
Down	押さえたコードの最高音から最低音に向かって下降するアルペジオになります。あたらなノートを追加す るとその音がパターンに挿入されます
Up & Down Inclusive	上昇下降を繰り返すアルペジオです。最高音と最低音を2回発音します
Up & Down Exclusive	上昇下降を繰り返します。最高音と最低音を1回だけ発音します
Random	押さえたコードの構成音をランダムな順序で発音します

9.2.2. コードアルペジオ

3つのエンジンのいずれかまたは全部でユニゾンコードモード [p.49]がオンの場合、コードによるアルペジオになります。単音を押さえた場合はその音を繰り返すのは通常の単音のアルペジオと同様ですが、コードを押さえるとその構成音を1つずつ発音する代わりに、そのコードの転回形を変えたコードが順次発音されます。

9.3. シーケンサー (Seq)

♪: Octave, Velocity, Trig Probability, Gate Length, Slideの各トラックの機能はこのチャプターの冒頭で [p.122]ご 紹介しましたとおりアルペジエイターとシーケンサーで共通です。ランダマイズ [p.128]、レイト、ポリリズム [p.131] の各機能も同様です。このセクションではシーケンサー独自の機能をご紹介します。

9.3.1. ピッチ

9.3.1.1. ピッチトラック: ランダム/リセットウィンドウ

各トラックのランダム/リセットウィンドウの機能につきましてはこちら [p.126]をご覧ください。ピッチ トラックのデータをランダム化した場合、その結果は選択したスケールにはめ込まれます。次のセクショ ンをご覧ください。

♪:アルペジエイター使用時はピッチトラックのランダム/リセットウィンドウは非表示になります。

デフォルト設定ではピッチトラックの各ステップの値は半音階の12種類の音程にはめ込まれます。Scale メニューでクロマティック以外のスケールを選ぶと、ランダム化したピッチトラックの各ステップの値 は、選択したスケールに沿ってはめ込まれます。

SEQUENCER SCALE					
Chromatic	Major	Major Natural Minor H		Melodic Minor	
Lydian	Mixolydian	Dorian	Phrygian	Locrian	
Major Penta	Minor Penta	Blues	Fifth	Custom	
SCALE EDITING					

Scaleスケール	ピッチ (数値:半音)
Chromatic	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Major	0, 2, 4, 5, 7, 9, 11
Natural Minor	0, 2, 3, 5, 7, 8, 10
Harmonic Minor	0, 2, 3, 5, 7, 8,11
Melodic Minor	0, 2, 3, 5, 7, 9, 11
Dorian	0, 2, 3, 5, 7, 9, 10
Phrygian	0, 1, 3, 4, 5, 7, 8, 10
Lydian	0, 2, 4, 6, 7, 9, 11
Mixolydian	0, 2, 4, 5, 7, 9, 10
Locrian	0, 1, 3, 5, 6, 8, 10
Major Pentatonic	0, 2, 4, 7, 9
Minor Pentatonic	0, 3, 5, 7, 10
Blues	0, 3, 5, 6, 7, 10
Fifth	0,5
Custom	[ユーザー設定]

10. サウンドデザイン・ティップス

サウンドデザイン・ティップスはPigmentsで初めて搭載された機能です。シンセについてそれほどよく 知らない方に分かりやすく使っていただくためと、エキスパートの方には時間節約になることを念頭に設 計した機能です。各プリセットを作成したサウンドデザイナーが選定したそのプリセットの音色変化で最 も効果的なパラメーターとその変化幅を表示します。

このサウンドデザイン・ティップス機能でPigmentsでの音作りが次の2つの意味で容易になればと思っています:

- どちらかと言えば初心者に近い方はパラメーターをエディットして"何が何だか分からなくなってしまう"ことを恐れずに素早く音作りを学べます。
- 既に色々なシンセで音作りを経験している方は音色変化に効果的なパラメーターヘクイック にアクセスできます (Pigmentsのパラメーターはほんの少ししかありませんが!本当は数百 種類あります)。

初心者でもエキスパートでもその中間の方でもどなたでもプリセットを作成したサウンドデザイナーと 同じような方法でサウンドデザイン・ティップ機能を使用できます。音作りをしていてあるパラメーター からインスパイアされた時にはいつでもポストイットのヴァーチャル版のようにコメントを残してその パラメーターと可変幅をメモしておけます。この一連の操作はサウンドデザイン・ティップスメニューに あるエディットティップス [p.137]機能で行えます。この機能につきましてはこのチャプターで後述しま す。

10.1. サウンドデザイン・ティップスを使用する

アッパーツールバーに見慣れないアイコンがあります:

この電球アイコンはボタンになっていて、オンにするとサウンドデザイン・ティップス機能が起動しま す。電球アイコンにマウスオーバーしたりクリックすると、アイコンがイエローに変わります。しかし他 のところも表示色がイエローに変わるところがあります:

上図のように、選択したプリセットの説明が画面中段に表示され、パラメーターのいくつかにイルミネー ションが点きます。これは、そのプリセットを作成したサウンドデザイナーがそのプリセットの音色変化 で最も効果的なパラメーターとして選定したものです。以降でこの機能の使い方やエディット方法をご紹 介します。

ドロップダウンメニューでサウンドデザイナー・ティップス機能のオン/オフ切り替えができますが、このメニューには他にもオプションがいくつかあります。それは後のセクション [p.137]でご紹介します。

サウンドデザイン・ティップス機能がオン、つまり電球アイコンが点灯している場合、パラメーターノブの外周部にイエローの区間が表示されます。この時、そのパラメーターのModリング上にもイエローの表示が付きます。

Modリング上のイエローの表示は必ずしもリング全体を覆うように表示しないこともあります。この表示 は、そのプリセットの音色変化で最も効果的なパラメーターの変化幅の最低値と最高値を示すものです ので、そのパラメーターの可動幅の一部のみになる場合もあります。

この表示が趣味と合わないな、という場合はエディットして別名でセーブ [p.14]できます。

10.2. エディットティップス

アッパーツールバーの電球アイコンの右に下向きの矢印があります。ここをクリックするとサウンドデザ イン・ティップメニューが開きます。

メニューには主に2つのオプションがあります:Show Tipsと(Advanced) Edit Tipsです。オンになってい るオプションにはチェックマークが付きます。

- Show Tips:電球アイコンをクリックした時にティップスを表示するかどうかを切り替えます。チェックマークを取り外すと電球アイコンが消灯し、チェックマークを付けると点灯します。
- (Advanced) Edit Tips:ティップスの追加や調整、ティップスの削除をパラメーター別に行 えます。

第3のオプションとして Remove All があります。これは名前の通り、すべてのサウンドデザイン・ティ ップスをそのプリセットから削除するコマンドです。これを選択した場合は本当に削除して良いのかどう かを確認するウィンドウが表示されますので、誤って削除してしまうことを防げます。

(Advanced) Edit Tipsがオンの場合、サウンドデザイン・ティップ機能に関係したエリアの表示が少し変化します。第1に、アッパーツールバーの電球アイコンのそばに歯車シンボルが表示されます。

歯車シンボルが表示されいてるということは、サウンドデザイン・ティップス機能がエディット可能な 状態になっているということが一目で分かります。

Edit Tipsがオンの場合に生じる表示の変化の第2は、下図のように外周の一部がイエロー表示になっているパラメーターの近くに小さなイエローの電球が表示されます。

この小さな電球には次の2つの機能があります:

- クリックすることでそのパラメーターのサウンドデザイン・ティップス機能の表示のオン/ オフを切り替えます。
- そのパラメーターがサウンドデザイン・ティップス機能がオンになっているパラメーターだということを分かりやすく表示するための標識としても機能します。加えて、小さな電球は表示していないほうのエンジンやモジュレーション・ソースのグループ、または画面中段のモジュレーション・ルートのボタンにも表示され、サウンドデザイン・ティップスがオンになっているパラメーターの位置が分かるようになっています。

また、パラメーターのModリングの周囲にも2つの小さなイエローのマーカーが付きます。このマーカー は音色変化に効果的な変化幅の最低値と最高値を表します。

この最低値と最高値はサウンドデザイン・ティップスをエディット [p.139]することで変更できます。

10.2.1. サウンドデザイン・ティップスの追加/削除

サウンドデザイン・ティップス機能がオンの状態で、サウンドデザイン・ティップスが入っていないパラ メーターにマウスオーバーすると、やや暗めの電球が表示されます。

このやや暗めの電球をクリックすると、そのパラメーターをサウンドデザイン・ティップスに追加できま す。

10.2.2. サウンドデザイン・ティップスのエディット

サウンドデザイン・ティップス機能で表示するパラメーターのModリングを**左クリック**してマーカーを ドラッグして最高値の変更ができます。同様にModリングを**右クリック**すると最低値を変更できます。ノ ブ自体は動作していますのでノブを回すことで変更した変化幅で良いかどうかの確認ができます。

♪: サウンドデザイン・ティップス機能をオンにした時にパラメーターの変化幅を表示させたい場合は、小さな電 球アイコンを点灯させたままにしておきます。

-
11. モジュレーション・ルーティング

Pigmentsで得られるモジュレーション機能のパワフルさ、フレキシビリティ、多彩さはほぼ無限です。 画面の下半分をモジュレーション機能の表示に使用し、そこで楽曲のイメージなどに完璧に合うまでプ リセットをパーソナライズ化できます。

非常にパワフルな一方で、モジュレーション・セクションの基本コンセプトのいくつかが分かると、この セクションが実は非常に使いやすいということが分かります。シンプルなエディットが1曲分のインスピ レーション源になるかも知れません!

11.1. モジュレーション・セクションのアウトライン

Pigmentsのモジュレーション・セクションは基本的にソフトウェア版"パッチベイ"でソースからデスティネーション (いずれも複数選択可) へ自在に接続できます。ソースは23種類あり、シンセタブやFXタブ の各種パラメーター (デスティネーション) に好きな数だけルーティング (接続) できます。

モジュレーション・ソースにはハードウェア・コントロール (ベロシティ、アフタータッチ、Modホイー ル、ノートナンバー) もありますし、トラディショナルなシンセパラメーター (LFO、エンベロープ) もあ ります。複雑なもの (ファンクション) や予測不可能なもの (チューリング、サンプル&ホールド) もありま すし、これらをすべて組み合わせたもの (マクロ、コンビネート) もあります。

各モジュレーション・ルートではさらに細かなコントロールができるサイドチェインも使用できます。

11.1.1.センターストリップ:3種類の表示

Pigmentsのセンターストリップはタスクの選択によって次の3種類の表示に切り替わります:モジュレーション・オーバービュー [p.140]、Modソースビュー [p.141]、Modターゲットビュー [p.142]

11.1.1.1. モジュレーション・オーバービュー

通常、センターストリップにはモジュレーションの全体像が分かるオーバービューが表示されます。ソー スビューやターゲットビューはモジュレーション・ルーティングに特定のエディットする時にのみ表示 されます。

モジュレーション・ソースは画面中段に横一列に表示されます。このストリップで様々なモジュレーショ ン・ルーティングの全体像をつかむことができます:

モジュレーション・オーバービューでは各ソースの動作状況を常に表示します。例えばLFOならその波形 が動いている様子が表示され、エンベロープがトリガーされればその設定に沿ったエンベロープの動き が表示されます。

Modホイールやアフタータッチなど定常的なソースはレベルが上下してそれぞれの状態を表示します。モ ジュレーション・ルーティングで使用していないソースはグレー表示になります。

11.1.1.2. モジュレーション・ソースビュー

パラメーターにマウスオーバーすると"+" アイコンが表示されます。

"+" アイコンをクリックするとセンターストリップの表示がModソースビューになります。

Wei
AT
Mill
HED
Env 2
Env 3
LP3
Fance
Fance<

ソースビューでは"+"アイコンをクリックしたパラメーターに対する各モジュレーション・ソースのモジ ュレーション量とそれのエディットに使用するスライダーを表示します。上図の例ではモジュレーション ・ルーティングがまったくない状態ですので、すべての数値がゼロでスライダーはグレー表示になってい ます。スライダーをクリックしてドラッグするとモジュレーション量の数値が表示され、同時にそのソー スが属しているModソースグループの色に変わります。

スライダーがセンターポジションから動くと、以下のうちのいずれかが表示されます:

- SC: SCをクリックするとサイドチェイン [p.153]を追加でき、選択したソースとは別に、もう1つのソースを追加できます。
- 設定済みのサイドチェインとそのレベルが表示されます。表示されたどちらかのフィールド をクリックするとその設定を変更できます。

Modソースビューから抜けるには、センターストリップ以外の画面をクリックするか、キーボードのエ スケープキー (esc) を押します。

Modソースビューの使い方などの詳細はこちら [p.147]をご覧ください。

モジュレーション・ルーティングの細かなエディットをするには、オーバービュー画面のモジュレーション・ソース名をクリックします。または、Modソースビューのソース名をクリックする方法もあります。

この時センターストリップの表示が明るいアウトラインのバーに変わり、そのソースに対する各デスティ ネーションとサイドチェインの設定状況を表示します。

全24種類のターゲットのカラーは、どれか1つが選択されてそのカラーに表示された場合でも、各ターゲットの上部に細く表示されたままになりますので、別のモジュレーション・ターゲットをクリックして切り替えることができます。

モジュレーターのサムネイルの隣にある矢印ボタンをクリックすると、次のような便利なオプションが選 択できます:

	SG1 COARSE	SG1 MOD VOLUMI		SG1 MAIN VOLUME						
	24					Drag knob contours to creat	te or edit a modulation routing			
	Chain									
		 	_		_					
Reassign all to	▶ ⁰	ENVELOPES		LFO		FUNCTIONS	RANDOM	COMBINATE	MACROS	

- Mute All:表示されているすべてのモジュレーション・ターゲットを一斉オフ (ミュート) できます。
- Unmute All:オフになっているモジュレーション・ターゲットをすべてオンにします。
- Remove All:表示されているすべてのモジュレーション・ターゲットを一斉削除します。
- Reassign All To:表示されているすべてのターゲットで使用できるモジュレーションページ のいずれかへ移動します。

Modターゲットビューから抜けるには、センターストリップ以外の画面をクリックするか、ターゲット ビューの右端にある "X" をクリックします。または、キーボードのescキーを押す方法もあります。

Modターゲットビューの詳細はこちら [p.149]を、サイドチェインの詳細はこちら [p.153]をご覧ください。

11.1.2. ヴィジュアルキュー: Modルート

オーバービュー画面で色付きのグラフィックがある場合、そのModソースは最低1つのModターゲットと 接続していることになります。グラフィックにはLFOのように自律的に動いているものやエンベロープの ようにノートオンに応じて動くものもあります。その他はエクスプレッション・ペダルなど、コントロー ラーの動きに応じてそれぞれの色で動きます。使用していないソースはグレー表示になります。

11.1.2.1. モジュレーション・ルートのカラースキーム

パラメーターがどのソースでモジュレーションされているかは一目で分かります。これは色分けを Pigments全体で統一しているためです。

Pigmentsのカラースキームが適用される操作例の一部には、次のようなものがあります:

- モジュレーションのターゲット (デスティネーション) になっているパラメーターにマウスオ ーバーした時に、または
- Modターゲットビューを開いてModリングで [p.149]モジュレーション量のエディットをしている時に、あるいは
- Modソースビューを開いてスライダーを調節 [p.147]している時に…

…ソースのグループによって決められた表示色になり、ターゲット自体は共通した色になっていることが 分かります。

例えばすべてのModソースから同時にターゲットにされているパラメーターがあるとします。そのパラメ ーターにマウスオーバーするとモジュレーション・オーバービュー画面は次のように表示されます:

上図のとおり、Modソースのグループ単位で色分けされています。つまり個々のソースはその上位組織の Modソースグループ [p.155]の一部だということになります。各ソースの設定はオーバービュー画面の直 下にあるグループタブを選択して内容のチェックやエディットができます。

また、Modソースグループを選択するとそのタブの上部がそのグループ色で点灯します。下図の例ではコ ンビネートタブが選択されていて、そのタブの上部がその上にあるコンビネート1や2と同色になってい ます。

♪:マクロタブは常時点灯します。これはどのModソースを選択しているかに関係なくマクロノブが画面に表示さ れているためです。

以下の表はModソースのグルーピングとそれぞれの表示色をまとめたものです:

Modソースグルー プ	モジュレーション・ソース	表示色
MIDI	ヴァーチャル・キーボード、ピッチ/Modホイール、エクスプレッション・ペ ダル	マゼンタ
Envelopes	エンベロープ1,2,3	オレンジ
LFO	LFO 1, 2, 3	イエロー
Functions	ファンクション1,2,3	グリーン
Random	チューリング、サンプル&ホールド、バイナリバリュー・ジェネレーター	ブルーバイオレッ ト
Combinate	コンビネート 1,2	レッドバイオレッ ト
Macros	マクロノブ 1,2,3,4	アクア

11.1.2.2. マウスオーバー、選択、エディット:ノブ表示の変化

ノブとModリングは操作方法によってその色とグラフィックが変わります。そのそれぞれを下図と表にまとめました。

表示	ビ ュ ー	ソース の選択	操作状況	内容
1	All	n/a	モジュレーションなし	値がゼロ (ノブが最低値またはセンター位置[上図は最低値])
2	All	n/a	モジュレーションなし	Modリングが値を表示 (表示色無変更)
3	All	n/a	1つか複数のモジュレーシ ョンあり	小さなマーカー (固定式または移動式) がModリングに表示
4	All	n/a	ノブの中央部にマウスオ ーバー	ノブが明るいグレーになり値を表示
5	3	Yes	Modリングにマウスオー バー	ModリングとModレンジが少し明るく点灯
6	3	Yes	Modリングにマウスオー バー (mod = 0)	Modリングがソースグループの表示色で細く点灯
7	3	Yes	ターゲットにマウスオー バー (mod ≠ 0)	Modリングがソースグループの表示色で細く点灯し、Modレンジが 同色で太く表示 (注参照 [p.142])
8	1, 2	No	ソースにマウスオーバー	ターゲットのModリングがソースの表示色で点灯する以外は表示な し (注参照 [p.142])
9	1, 2	No	ノブエリアをマウスオー バー	小さな"+" アイコンが表示され、それをクリックするとModソース ビューが表示
10	2	No	小さな"+" アイコンをクリ ック	小さな"+" アイコンがブルーになり、ノブエリアがハイライト表示

凡例

- ビュー1:モジュレーション・オーバービュー
- ビュー2:Modソースビュー
- ビュー3:Modターゲットビュー
- n/a:関係なし

】♪:LFOはデフォルト設定ではバイポーラですのでモジュレーション量を上げるとパラメーターノブのその時の向き からプラスとマイナス両方向にレンジが広がります。モジュレーション量をその時のノブの向きからプラスまたはマ イナスどちらか一方にのみ動くように設定したい場合はLFOのユニボーラ機能をオンにします。LFOやその他のモジュ レーション・ソースの詳細につきましては次のチャプター [p.155]をご覧ください。

11.1.2.3. Modリングにレンジが表示されないのはなぜ?

Modリングにモジュレーション・レンジが表示されなかったり、レンジが一部しか表示されない場合があ ります。これには次の3つの症状があります:

- Modターゲットビュー: ソースは選択済み、ルーティングも問題なし、Modリングも点灯しかしレンジが表示されない。
- モジュレーション・オーバービューまたはModソースビュー: ソースにマウスオーバーして も、モジュレーション量はゼロ以上の値なのにターゲットのノブに何も表示されない。
- ターゲットパラメーターのノブにマウスオーバーすると画面中段のModソースは確かに点灯 するが、それ以外は何も表示されない。

朗報です!これらの症状はどれも同じ原因で発生していて、しかも簡単に治療できます。

この原因は単純です:モジュレーション・ルーティングはターゲット・パラメーターの可動範囲でのみ 有効となります。そのためターゲットのパラメーターの値が高過ぎたり低過ぎたりしていた場合、モジュ レーションによって値がそのパラメーターの可動範囲から一部はみ出てしまったり、範囲から完全に外れ てしまうことがあります。

対策としてはモジュレーション・レンジがフルに表示できるようにターゲットのパラメーター値を調節 します。欲しい音色変化によってはモジュレーション量の再調節が必要になる場合もあります。

11.2. モジュレーションの構築

モジュレーション・ルーティングの構築法には2種類あり、目的に応じて使い分けることができます。

- 複数のソースで1つのターゲットをモジュレーションするルーティングを構築し、この時に はサイドチェインの設定はしたくない場合、Modソースビューが便利です(次のセクション をご覧ください)。
- 1つのソースで複数のパラメーターをモジュレーションするルーティングを構築し、この時にサイドチェインの設定もしたい場合はModターゲットビュー [p.149]が便利です。

11.2.1. 構築法1: Modソースビュー

この方法ではスライダーで2つのことを同時に行います:既存のモジュレーション・ルーティングのモジ ュレーション量の調節のほか、スライダーを動かすことで新規にモジュレーション・ルーティングを構築 することも可能です。この方法では複数のModソースの組み合わせが1つのターゲットパラメーターにど んなモジュレーションをするのかを簡単にチェックできるメリットがあります。

11.2.1.1. パラメーターを選ぶ

Modソースビューを開くには、ターゲットとなるパラメーターのノブエリアにマウスオーバーします。す ると小さな"+" アイコンがノブの近くに表示されます:

"+" アイコンをクリックするとModソースビューが開きます。

11.2.1.2. モジュレーションの追加とエディット

Modソースビューに入ると、オーバービューではLFOなどのグラフィックで表示されていた24個の小窓が スライダーに変わります。各スライダーは-1.00から1.00の範囲を0.01ステップで調節してそのソースか らターゲットへのモジュレーション量を設定できます。

Env 2		LFO 1	LFO 2	LFO 3		Func 2
0.00	0.14	0.07	0.00	-0.27	0.15	0.00
	SC			SC	Macro 3 -0.78	

モジュレーション量がゼロの場合、そのスライダーの背景色は黒になります。ゼロ以外の値にすると背景 色がModソースグループ [p.155]の色に変わります。 SCはサイドチェイン [p.153]は使用可能という表示 です。その場合はその名称とレベルが表示されます。名称かレベルのどちらかのフィールドをクリックす るとその設定をエディットできます。 Modソースビュー内でモジュレーションを削除 (解除) する方法はいくつかあります。1つにはスライダー をダブルクリックする方法があります。この時、スライダーの値がゼロにリセットされて、そのソースの スライダー背景色が黒になります。

他には下図のように選択したパラメーターのモジュレーターのリストを開いて行う方法があります:

リストを開くには、パラメーターのノブエリアにマウスオーバーして、以下のうちどちらかの操作を行い ます:

- パラメーターの近くに表示される小さな"+" アイコンを右クリックする
- パラメーター名またはパラメーターのノブエリアを右クリックする

リストが開きましたら、リストから削除したいモジュレーターを左クリックします。全ルーティングを同時に削除したい場合はRemove Allをクリックします。

♪:右クリックでモジュレーターリストを開くと画面中段ではModソースビューが開きます。

11.2.1.4. Modソースビューから抜ける

Modソースビューから抜ける方法はいくつかあります。抜けた後にどこへ行くかによって操作が次のよう に変わります:

- "+" アイコンをクリックすると元の場所に戻ります
- Modソースビュー以外の画面 (どこでもOKです) をクリック
- コンピュータのキーボードのエスケープキー (esc) を押す
- 画面中段のModソース名のいずれかをクリック

最後のオプションを行うとModターゲットビューに移動します。引き続きモジュレーション・ルートのサ イドチェインのエディットをしたい場合に便利です。

11.2.2. 構築法2: Modターゲットビュー

この方法では1つのModソースで複数のパラメーターをモジュレーションする際により細かな設定ができ ます。

11.2.2.1. ソースを選択する

Modターゲットビューでモジュレーション・ルーティングを構築したい場合、最初はモジュレーション ・オーバービューでソース名をクリックして選択します。

Modソースを選択するとPigmentsの画面表示に大きな変化が2つ起きます:

- Modオーバービュー画面から明るいカラーの外周がある黒い長方形に表示が変わり、選択したソースが関係しているモジュレーション・ルートとそのサイドチェインやモジュレーション量のリストが表示されます。新たにモジュレーション・ルートを設定するとそれがリストに追加されます。
- 選択したModソースが関係しているターゲット・パラメーターのModリングの表示が変わり、そのモジュレーション量が表示されます。ヴィジュアルキュー(見た目で分かる変化)のリストはこちら [p.145]にありますが、最も分かりやすいのはModリングの色の変化です。その色がModターゲットビュー画面の外周色と同じ場合、そのパラメーターは選択したModソースとの間にモジュレーション・ルートが構築されています。

♪: ターゲット・パラメーターがFXタブやSeqタブにあるパラメーターでも、Modターゲットビュー画面に表示されます。Modターゲットビューから抜けずにSynth, FX, Seqの各タブを自由に切り替えて新たなモジュレーション・ルートを追加することもできます。

Modソースを選択した後、Modターゲットビュー以外の画面でパラメーターに次の操作を行えます:

- パラメーターのノブの中央部をクリック+ドラッグしてそのパラメーターの値を変更でき、 そして
- Modリングでそのパラメーターに対するモジュレーション量をエディットできます。

上記と同じ要領で既存のモジュレーション・ルートのモジュレーション量のエディットや新規ルートの 追加も行えます。

最初に、選択したModソースでモジュレーションをかけたいパラメーターのModリングにマウスオーバーします。するとそのノブの外周部にModターゲットビューの外周部と同色の細い弧が表示されます。この時、カーソルが双方向の矢印に変わります。

次に、Modリングをクリックしてモジュレーション量を変更したい方向にドラッグします。すると表示していたそのパラメーターの値の位置を起点に弧が太くなります。これがそのパラメーターに設定されたモジュレーション・レンジになります。

モジュレーション・レンジの表示はModソースの性質によって変わります。アフタータッチやエンベロー プなどModソースの動きがプラスまたはマイナス方向のどちらか一方だけの場合、そのソースは"ユニポ ーラ"と呼ばれるソースです。この場合モジュレーション・レンジはパラメーターの値からどちらか一方 にのみ伸びていきます。

LFOをユニポーラ・モジュレ ーションとして使用

ー方LFOや特定の状態のファンクションなどModソースの動きがプラスとマイナス両方向があるもの は"バイポーラ"のModソースと呼びます。この場合モジュレーション・レンジはパラメーターの値を中心 に両方向へ広がります。

LFOをバイポーラ・モジュレ ーションとして使用

♪: バイポーラModソースはユニポーラにすることができます。方法などの詳細はモジュレーション・ソースのチ ャプター [p.155]で変更したいソース名をサーチしてください。

上記までの方法で欲しい結果になるばでモジュレーション・ルートを追加していけます。追加できるルート数は無制限です。

ですがモジュレーション・ルート数が1画面で表示しきれないほど増えた場合は、Modターゲットビューの下部にグレーのスクロールバーが表示されます。

11.2.2.3. モジュレーション・レンジが全部見えないときは

次の2つのファクターによってはモジュレーション・レンジの最高値または最低値あるいはその両方が表示されない場合があります:

- パラメーターの設定値
- モジュレーション・レンジの幅

このような状況は、パラメーターの設定値を変更するか、モジュレーション・レンジを縮小するか、ある いはその両方を行うことで解消できます。

詳しくはこちらをご覧ください:Modリングにレンジが表示されないのはなぜ? [p.142]

11.2.2.4. バイポーラModソースがModレンジに及ぼす影響

LFOなどのバイポーラModソースの動作は最初は分かりにくいかも知れません。ここでデフォルト・プリ セットを使って次の操作をしてみましょう。

- 1. デフォルト・プリセットを選択します
- 2. ModソースグループからLFOタブを選択します
- 3. Engine 1のCoarseチューンの値が0 (12時の方向) になっていることを確認します
- 4. モジュレーション・オーバービュー画面でLFO 1をクリックします
- 5. Engine 1のCoarseチューンにマウスオーバーします
- 6. Modリングにイエローのアウトラインが付き、カーソルが双方向の矢印に変わります
- 7. Modリングをクリックして上にドラッグしてモジュレーション量を増やします
- 8. ドラッグするとModターゲットビュー内の値が上がっていきますので0.50 (50%) にセットします
- この時点まででイエローのリングはModリング全体に広がりブルーのマーカーは両端に移動 します
- イエローのリングに注意しながらモジュレーション量を1.00 (100%) にセットします。リン グは変化しません
- 11. モジュレーション量を0.50 (50%) に戻します
- 12. 今度はEngine 1のCoarseチューンを左いっぱいに回して-60にセットします
- 13. レンジの上端が12時の位置に移動したことが分かります
- 14. イエローのリングに注意しながらモジュレーション量を1.00 (100%) にします
- 15. するとレンジの上端がModリングを埋めていくように伸びていきます

これで何が起きたのか、噛み砕いてみましょう。

- どのパラメーターでもその可動幅いっぱいにモジュレーションがかけられます。
- ということはモジュレーション・レンジ±1.0と同じことになります。
- Engine 1のCoarseチューンには±60半音の可動幅があります。
- Engine 1のCoarseチューンの値0を0.5 (50%) と仮定します。
- モジュレーション量を100%にすると±50%または0-100%のレンジでLFOをスウィングさせることになります。
- Engine 1のCoarseチューンの最低値 (-60) を0.00 (0%) と仮定します。
- Engine 1のCoarseチューンを-60にセットした場合、全可動域にわたる (+60に達する) モジ ュレーションをかけるには、モジュレーション量を1.00 (100%) にする必要があります。

11.2.2.5. モジュレーション・ルートのミュート

Modターゲットビューで削除せずにモジュレーション・ルートを一時的に"ミュート"することができま す。手順はリスト内のパラメーター名をクリックしてグレー表示にするだけです。グレー表示になるとそ のパラメーターにはモジュレーションがかかりません。

そのモジュレーション・ルートがなくても問題ない、もう不要だという場合はそれを永遠に"ミュート"さ せる必要があります。その場合はModターゲットビューのリストから削除して上書きセーブします。そう でないと同じプリセットを後で選択した時にモジュレーション・ルートのミュートが解除されてしまう からです。

次のセクションではModターゲットから削除する手順をご紹介します。

11.2.2.6. Modターゲットの削除

ターゲット・パラメーターに対するモジュレーションを無効にする方法はいくつかあります。

ルート自体は残したままモジュレーションだけをModターゲットビューで無効にするには、次の2つの方 法があります:

- ターゲットのModリングをダブルクリックして値をゼロにします。
- ターゲットのModリングをクリックして手動でゼロにドラッグします。

Modターゲットビューからモジュレーション・ルートを完全に削除するには、サイドチェイン (SideChain)の右にある"X"をクリックします。 Pigmentsのモジュレーション・セクションにはモジュレーション・ルーティングに適用できる今までに ないオプションがあります。それがサイドチェインです。

ミキシングをしたことがある方ならサイドチェインを使ってトラックにエフェクトをかける方法に慣れ ているかと思います。エフェクトに入るオーディオがその前段でコンソールのどこか (EQやエフェクトセ ンドなど) へ行くルーティングです。

モジュレーション・ルーティングでのサイドチェインは、メインのModソースからターゲット (デスティ ネーション)パラメーターへのルートの間に、第2のModソースをはさみ込む道を作ることを指します。

シンプルな例ではオシレーターのピッチを揺らすLFOの出力レベルをModホイールで調節するといったル ーティングが挙げられます。より複雑な例ではバイナリ・ジェネレーターを使ってLFOの出力レベルを予 期せぬタイミングで大きくするといったケースもあります。

モジュレーション・ルーティングを構築後、オーバービュー画面で最初に見えるのはデスティネーショ ンのパラメーター名とモジュレーション量、"SC"の文字 (SideChainの略)、それとそのルートを削除する 時に使用する"X"です。

サイドチェインのソースを選択するには、SCフィールドをクリックします。メニューが開いて選択中の ソースがある場合はその外周が点灯しています。

ソースを選択するとメニューが閉じて値フィールドがSCソースと"X"の間に表示されます。

サイドチェインの値をセットするには、そのModルート内の数値をクリック+ドラッグします。値は0.00 から1.00の間で変化します。サイドチェインはメインのModレンジの範囲内で動作しますので、サイドチ ェインの値を最高値の1.00にしても、メインのModルートのモジュレーション量の最高値を超えることは ありません。

ー例としてLFOでオシレーターのファインチューンを0.25のモジュレーション量で変調するルートがある とします。サイドチェインのソースにModホイールを選択してその値を1.00にした場合、Modホイールを ゼロ以上に上げないとモジュレーションはかかりません。Modホイールを上げていくにつれてLFOによる モジュレーションが深くなっていきます。Modホイールが最大になると、LFOによるモジュレーション量 は設定した0.25になります。

上記と同じ設定でModホイールを50%の位置にするとLFOによるモジュレーション量は0.125 (設定値0.25 の半分) になります。

サイドチェインをミュートするには、そのレベルをダブルクリックして値をゼロにリセットします。その 状態でプリセットをセーブすればサイドチェインのルーティングを残したままにしておけます。サイドチ ェインを削除するには、サイドチェインメニューを開いて"None"を選択します。これでサウンドチェイ ンのソースは削除されます。 Modターゲットビューから抜けるには、センターストリップ以外の空いている画面をクリックします。キ ーボードのescキーを押して抜けることもできます。

12. モジュレーション・ソース

このチャプターではモジュレーション・ソースの各種機能をご紹介します。前のチャプターではモジュレ ーション・ルーティング [p.140]の構築方法や使い方をご紹介しています。

12.1. Modソースグループ

12.1.1. キーボードタブ

12.1.1.1. ヴァーチャル・キーボード

Pigmentsのヴァーチャル・キーボード

ヴァーチャル・キーボードはMIDIタブを選択すると画面のした半分に表示されます。外部MIDIデバイス を必要とせず、このキーボードで演奏できます。キーボードをクリックするだけでプリセットが鳴りま す。キーボード上をドラッグすればグリッサンドになります。

キーボードのキーの手前をクリックすると高いベロシティ値で発音し、奥のほうでクリックすると低い ベロシティ値で発音します。

12.1.1.2. ピッチ/Modホイール

ヴァーチャル・キーボードの左側にはピッチとModホイールがあります。この2つはマウスで上下にドラッグして使用します。ホイールを操作するとアサインされている機能が動作します。この2つのホイールはMIDIコントローラー (MIDI CC) に反応します。

ピッチホイールは放すとゼロに自動的に戻りますがModホイールは放した位置で止まります。

12.1.1.3. ベンドレンジ

ピッチベンドレンジは上下別々に設定できます。例えば上方向には+2半音に、下方向には-36半音という 設定も可能です。ギターのアームやWhammyのようなプレイができます。

12.1.1.4. チューニングセクション

Master Tune

デフォルト設定はA=440Hzですが、400~480Hzの範囲でPigmentsのマスターチューニングを変更できま す。Ctrlキーを押しながらノブをドラッグすると0.1ステップで調節できます。ノブをダブルクリックする とリセットされます。

Micro Tuning

Pigmentsは色々な文化の調律にも対応しています。Micro Tuningのドロップダウンメニューを開くと、 12種類のプリセットから1つを選択できるほか、.scl または .tun 形式ファイルをインポートすることもで きます。 Pigmentsの最大同時発音数は32ボイスです。ボイス数が多くなればCPU負荷も高くなりますので、 Pigmentsには使用するボイス数を制限するパラメーターがあります。これはプリセットごとに設定でき ますので、あるプリセットでは4ボイス、別のプリセットでは16ボイスというように、必要に応じて設定 できます。

Play Mode
Mono
Legato
Poly 2
Poly 3
Poly 4
Poly 5
Poly 6
Poly 7
✓ Poly 8
Poly 12
Poly 16
Poly 24
Poly 32
Poly 8 🔹 🌏
Mode Glide Time

設定値にはモノ、レガート、ポリ2からポリ32までがあります。選択した設定値にチェックマークが付き ます。

グライドがオンの場合は2つのノート間は徐々に変化します。プリセットにグライドを付けるには、 GLIDEセクションのTimeノブを0.00以上に上げます。可変幅は0.001から10.0 (秒)です。

Alwaysボタン

このボタンでグライドの動作モードを切り替えます:

• Always (ボタンの外周がブルーに点灯)

グライドが常時かかります。スタカートで弾いた場合でもグライドがかかります。

• Legato (ボタン消灯)

レガート奏法 (前の音をノートオフする前に次の音を弾く奏法) をするとグライドがかかります。このモードはコードを短く切るように弾かない限りモノフォニック(単音)のプリセットを演奏する場合に最適です。

Timeノブ

Timeノブでピッチが前の音程から次の音程に移るまでの時間を設定します。

Timeノブにマウスオーバーすると小さな"+" アイコンが近くに表示されます。このアイコンをクリックするとModソースビュー [p.147]が開き、このパラメーターを好きなModソースでモジュレーションすることができます。

12.1.1.7. キーボードカーブ

Pigmentsでは次の3つの機能でキーボードカーブを設定できます:

- Velo: ベロシティカーブ
- AT:アフタータッチ
- KBD:キーボード

VeloとATは、演奏スタイルや好みに合わせてキーボードのレスポンスを調節できるものです。KBDは、 キーボードで弾く音程の上下をModソースとして利用できるものです。この3つはセンターストリップの 左にあるキーボードModソースグループに入っています。

カーブの左端と右端のポイントは左右に動かすことはできませんが、上下にドラッグして反転したカーブ を作ることができます。また、左右両端の中間の任意の位置にポイントを2つ追加でき、合計4ポイントの 間にある上下の矢印をドラッグしてカーブを調節できます。カーブは、エクスポネンシャルからリニアや ログカーブまで自在に作れます。

カーブの左にあるボタンをクリックしてカーブを設定したい機能を選択します。カーブはプリセットごと にセーブできます。

12.1.2. エンベロープタブ

12.1.2.1. Env 1: 一見VCA専用に見えますが…

…VCA以外にも他のパラメーターのModソースにすることができます。ゲート (Gate) ソースはPoly KBD に固定されていて変更できません。

12.1.2.2. エンベロープのパラメーター

エンベロープ1のゲートソースが固定されている以外は、3つのエンベロープの機能は同一です。上下に 並んだノブは互いに密接な関係があります。下表はエンベロープの各パラメーター名とその機能をまとめ たものです:

パラメ ーター	内容
Attack	ノートオンなどでスタートした瞬間から最大レベルに達するまでの時間を設定します (1msec - 20.0秒)
Att Curve	アタックのスローブ形状を-20.0 (対数カーブ) から20.0 (指数カーブ) の範囲で調節します:0.00 = 直線
Decay	最大レベルからサステインレベルに到達するまでの時間を設定します (1msec - 20.0秒)
Dec Curve	ディケイのスローブ形状を-20.0 (対数カーブ) から20.0 (指数カーブ) の範囲で調節します:0.00゠直線
Release Link	ディケイとリリースのタイムをDecayノブで、ディケイとリリースのカーブをDec Curveノブで同時に設定しま す。詳しくはこちら [p.159]をご覧ください
Sustain	ノートオフまでの間、一定に保たれる (サステイン) レベルを設定します
Gate Source	エンベロープをトリガー/リトリガーするためのソースを選択します (Env 2, 3のみ:Env 1のゲートソースは固定)
Release	ノートオフ以後にエンベロープのレベルがゼロになるまでの時間を設定します
Release Link	上記の同名機能と同機能です:ディケイとリリースのタイムやカーブをリンクします。詳しくはこちら [p.159]を ご覧ください
ADR button	エンベロープの動作モードをADSRまたはADRに切り替えます:詳細はこちら [p.160]

♪: Ctrl+クリックでパラメーターの値を微調整できます。パラメーターをダブルクリックするとデフォルト値にリ セットします。

12.1.2.3. リリースリンク・ボタン

同じボタンが2つあり、1つはDecayノブの近く、もう1つはReleaseノブの近くにあります。リンクをオン にするとディケイタイムとリリースタイムの両方をDecayノブで調節できます。この時Releaseノブはグ レー表示になって独自の調節ができなくなります。

また、リンクがオンの場合はDec Curveノブでリリースのカーブも同時に調節できます。オフの場合、リ リースのカーブはエクスポネンシャル (指数カーブ) 固定になります。 まず用語説明をします:ADRはアタック、ディケイ、リリースのことで、ADSRはアタック、ディケイ、 サステイン、リリースを指します。

ADRモードがオン (ボタン点灯) の場合、エンベロープはADSRとは別の動作になります:

- ADRエンベロープではノートオフの時点でリリースに移行せず、エンベロープがリトリガー されない限りディケイタイムを完全に実行します。
- サステインレベルはディケイからリリースへの単なる通過点となり、ノートオンの間一定レベルを維持する機能を停止します。

12.1.3. LFOタブ

LFOはロー・フリケンシー・オシレーターの略です。3つのLFOはすべて同じパラメーター構成です:

パラメーター	内容
Waveform	波形を調節します:サイン波->三角波->矩形波->サンプル&ホールド
Symmetry	波形の最大振幅と最小振幅との距離を調節します
Rate	LFOの周期 (スピード) を調節します (シンク機能付き)
Phase	LFO波形のスタートポイント (位相) をシフトします
KeyTrack/Fade/ Smooth	LFOの動作を各パラメーターで調節します:詳しくはこちら [p.160]
Reset Source	LFOをトリガー/リトリガーするソースを選択します
Unipolar button	プラス方向またはマイナス方向のみのLFOモジュレーションにしたい場合にこのボタンをクリック します

12.1.3.1. キートラック/フェイド/スムーズ

ノブの下のパラメーター名フィールドをクリックするとLFO動作を調節する3つのパラメーターから1つを 選択できます。

パラメーター	内容	レンジ
KeyTrack	LFO周期をMIDIノートナンバーに応じて増加/減少させます	±200%
Fade	LFOの出力が最大になるまでの時間を調節します	.001-20.0 sec
Smooth	LFO波形のピーク部分をフラットにし、エッジを丸めます	0-4.00 sec

12.1.4. ファンクションタブ

Pigmentsには3つのファンクション・ジェネレーターがあり、それぞれは非常に複雑なモジュレーション ・ソースとして使用できます。3つすべてを別々の設定にして同時に使用することができます。

各ファンクションは最大64個のポイントを設定でき、各ポイントのレベルや各ポイント間のカーブを 別々に設定できます。

ファンクション画面の全パラメーターのリストと基本的な機能を先にご紹介し、後で設定方法などをご 紹介します。

パラメーター	内容	レンジ
Function view	全ポイントと各ポイント間のカーブを表示する画面です	設定によりシンプルだったり複雑 だったりします!
Function X	3つのファンクションから1つを選択します	Function 1-3
Rate	フリーラン (Hz) を含む4つのシンク設定から1つを選択します	Hertz, Binary, Triplets, Dotted
Bipolar	動作モードをバイポーラかユニポーラのどちらかに切り替えます	On (バイポーラ), Off (ユニポーラ)
Mode Selector	選択したファンクションの動作モードを設定します	LFO, Envelope
Play Mode [p.164]	[動作モードをLFOに設定した場合] ワンショット、ループ、常時動作のいずれかを選択します	One, Loop, Run
Envelope Mode [p.165]	[動作モードをEnvelopeに設定した場合] ループのオン/オフ切替とスタート/エンドポイントを設定します	Loop, Start, End
Gate Source [p.165]	プレイモードをOneやLoopに設定した場合のトリガー/リトリガ ーソースを設定します	13種類; Run mode = None [p.164]
Copy to [p.163]	設定を他のファンクションにコピーします	Fct 1-3
Presets [p.164]	ファクトリー/ユーザープリセットの選択またはセーブ/リコール をします	(無制限)
Draw Mode	ファンクションをドロー、エディットする際のツールを選択しま す	Edit, Line, Ramp, Saw
Magnetize	グリッドラインの表示/非表示と、ポイントをグリッドへスナッ プするかどうかを設定します	On, Off
Regen [p.165]	ランダムなファンクションを生成します	0.00 to 1.00 (0.001ステップ)
Point	ファンクション内にポイントを設置します	最大64ポイント
Time	選択したポイントの横軸上の位置をシフトします	(ポイントの位置によって変わりま す)
Level	選択したポイントの振幅を設定します	0.00 to 1.00 (0.006ステップ)

表中のリンクもそれぞれご参照ください。ではファンクションの作成方法をご紹介します。

12.1.4.1. ポイントの追加と削除

手始めにデフォルト・プリセットを選択してファンクションタブを選びます。ファンクション1が選択され、左から右へ下降していく直線が表示されているのをご確認ください。

ファンクションビュー画面の任意の位置をクリックしてください。クリックした位置にポイントが追加 されます。1つのファンクション内に最大64個のポイントを入れることができます。

ポイントを右クリックすると、そのポイントが**削除**されます。複数のポイントを削除するには、マウスの 右ボタンでクリック+ドラッグします。

12.1.4.2. ポイントの移動

ポイントを移動させるには、ポイントの周囲に表示されるサークルをクリックしてドラッグします。この 時、上下にドラックするとそのポイントのレベルが変わり、左右にドラックするとタイムが変わります。 前後のポイントを越えてドラッグすることはできません。

12.1.4.3. カーブの変更

手始めにデフォルト・プリセットを選択してファンクションタブを選びます。ファンクション1が選択さ れ、左から右へ下降していく直線が表示されているのをご確認ください。

ファンクションビュー画面の中央付近にポイントを追加します。最初と最後のポイントからなるべく離れ た位置に追加しておくと後でカーブの変化が見やすくなります。

追加したポイントをドラッグしてレベルを0.300程度にします(数値は画面の右側に表示されます)。最初のポイントと比べてかなり低めにしておくことでカーブを変更した時に分かりやすくなります。

各ポイント間を結んでいる線の中間に上下の矢印があります。どれか1つを行けるところまで上にゆっく りドラッグしてみてください。線がファンクションビュー画面の最上部にワープして完全に四角形のよ うな形になります。これは、ポイント1から2へのファンクションの変化が一瞬で行われるという意味で す。

同様に逆方向にもやってみましょう:上下の矢印を下にドラックすると上記のような変化が下側に起こり、線が下端に届くと線が四角形のような形になります。

12.1.4.4. ドローイングツール

ドローイングツールは、ファンクション画面の右下にあり、ファンクションをドローしたりエディットしたりする際に便利です。ボタンは左から右へ、次のものがあります:

- Edit:ポイントを1個作成します
- Draw Line: 2点間を線で結びます
- Draw Ramp: 2点間にランプを作成します
- Draw Saw: 2点間にソー (ランプを反転したもの) を作成します

"Draw"ツール (Line, Ramp, またはSaw) を使用している場合、シングルクリックでセグメントが1つ作成 されます。クリック+ドラッグで複数セグメントのカーブが生成されます。

ポイント間のカーブは、ポイント同士の中間点にある上下の矢印をドラッグして調節します。但し、2点 が完全に同レベルの場合はカーブの調節はできません。

Magnetizeボタンは、ポイントを直近の縦位置に"スナップ"させることができ、正確なポイント位置を簡 単に設定できます。この機能をオフにすることで、ポイントをスナップさせずに自由な位置に設置するこ ともできます。

ポイントを削除するには、そのポイントを右クリックします。

12.1.4.5. ファンクション間のコピー

作成したファンクションを他のファンクションスロットにコピーする方法は、非常に簡単です。Presets ボタンの右にあるブルーのコピーアイコンをクリックするだけです:

コピーアイコンをクリックするとメニューが開き、コピー先を選択できます。例えば、Function 1にいる 場合、コピー先としてFunction 2と3が選べます。コピー先をクリックするとコピーが始まります。この 時、コピーの実行を確認できます。

この機能はファンクションのバックアップを取る場合や、よく似ているけれど微妙に違うファンクション を作成したい場合などに手軽で便利な方法です。

12.1.4.6. ファンクション・プリセットについて

Presetsフィールドをクリックするとファンクション・プリセットのリストが開きます。Arturiaで作成したファンクションがいくつかはいっていて、そのまま使用したりエディットのベースにできます。

プリセットをエディットしたり、最初からオリジナルのファンクションを作成した場合、それをSaveま たはSave Asオプションでセーブできます。ファクトリー・プリセットは上書きできませんが、ファクト リー・プリセットをエディットしたものをSave Asでセーブできます。

セーブ後、リストを開くとそれを含んだリストが表示されます。この時点から、セーブしたファンクショ ン・プリセットをエディットしてSaveで上書きしたり、Save Asで別のプリセットとしてセーブすること ができます。

オリジナル・プリセットを削除するには、プリセット名にある "X" をクリックします。

12.1.4.7. ファンクションのプレイモード

注) このモードはファンクションの動作モードのドロップダウンメニューで *LFO* を選択した場合にのみ表 示されます。

パラメータ ー	内容
One	ファンクションがトリガーを受けると1回だけ走ります (ワンショット)。ゲートソースでトリガーソースを選 択できます
Loop	一度トリガーされると次のトリガーを受けるまでループします。ゲートソースでトリガーソースを選択できま す
Run	選択直後から自律的にループし、すべてのトリガーを無視します。プレイモードがRunの場合 [p.164]をご覧 ください

12.1.4.8. プレイモードがRunの場合

プレイモードがRunに選択されている場合、ゲートソース (Gate Source) の設定が強制的にNoneになりま す。これはRunの場合、トリガーソースによるリセットを必要とせず、ファンクションが自律的にループ するためです。その結果ゲートソースを選択する意味がなくなります。 注) このモードはファンクションの動作モードのドロップダウンメニューで Envelope を選択した場合に のみ表示されます。

エンベロープモードでは、ファンクションに"S"の文字が入ったポイント (サステインポイント) が追加さ れます。例えば、ファンクションがMIDIノートオンでトリガーされると、ファンクションは先頭からサス テインポイントに達するまで進行します。そして:

- ループがオフの場合、ノートオフになるとファンクションの終点に向かって進行します。
- ループがオンの場合は、ファンクションはノートオフになるまでスタートポイントとエンド ポイント間をループし、ノートオフになるとエンドポイント以降に進行します。

サステインポイントは上下左右にドラッグでき、2点間の自由な位置に設置できます。サステインポイントのどちらかの側にあるポイントは追加/削除ができますが、サステインポイントは削除できません。

パラメーター	内容
Loop	エンベロープのループのオン/オフを切り替えます
Start	ループのスタートポイントを設定します
End	ループのエンドポイントを設定します

12.1.4.10. ゲートソース

プレイモードがOneかLoopの場合にのみ、ゲートソースが使用できます。ネームフィールドをクリック するとメニューが開いてソースを選択できます。選択したソースにはチェックマークが付きます。

12.1.4.11. リジェン:ファンクションのランダム化

Regenの値を調節するにはクリックして上下にドラッグします。サイコロのグラフィックの目の数が増え ていくとファンクションの各ポイントの振幅がよりランダムになります。カーソルを放すと新たなファン クションに置き換わり、サイコロの目がリセットされます。

12.1.5. ランダムタブ

ランダムタブ (*Rand 1, Rand 2, Rand 3*) にはそれぞれドロップダウンメニューがあり、次の3種類のラン ダムジェネレーターから1つを選択できます:Tuning, Sample & Hold, Binary

12.1.5.1. チューリング

チューリング・ジェネレーターにはランダムな値を作り出す機能があります。完全なランダムもできます し、特定のサイクルでループさせることも可能です。サイクルの長さはFlipやLengthパラメーターの各設 定によりますが1-64ステップの範囲で指定できます。

パラメーター	内容	レンジ
Flip	ランダム出力とサイクルの長さが"鏡像"になる確率を設定します	0.00-100%
Length	サイクルの長さを設定します	1-32 (Filp=100%の場合は1-64)
Rate	フリーラン (Hz) を含む4種類のシンク設定から1つを選択します	Hertz, Binary, Triplets, Dotted

Flipとは何をするものなのか?

Flipパラメーターでは出力値が反転したり逆になる可能性の割合を設定します。

一例として下表をご覧ください。Lengthの値を2にした場合です:

%	Length	Output 1	Output 2	Output 3	Output 4	Output 5
0.00	2	х	У	х	У	х
50.0	n/a	ランダム (0-1)				
100	2+2	0+x	0+y	1-x	1-y	0+x

この表にはどんな意味があるのでしょうか?

- Flipが0.00%の場合、Length=2ですのでステップ1と2の出力値(x, y) を交互に繰り返します。
- 100%の状態ではステップ1と2の出力値にミラーリングや反転が起こります。サイクルの長さは2から4と2倍に伸び(縦に鏡を置いたイメージ)、出力値は仮に0から1までの値を出力すると見なすと反転します(中間値0.50で鏡を横に置いたイメージ)。
- 50%ではステップ1と2の出力値は完全にランダムです。2度目のステップ1と2が前の出力値 を繰り返すのかどうかがハッキリしませんので"サイクル"の意味も薄れます。サイクルの長 さを見分けるのはFlipパラメーターにマウスオーバーしない限り難しくなります。

0.00%と50%の場合は同じ結果が必ずでるか、完全なランダムですので分かりやすいです。次の図は 100%の場合に起こることをヴィジュアル化したものです。

ステップ1の出力は0+0.25=0.25、ステップ2は0+0.99=0.99となり、ステップ3は1.0-0.25=0.75、ステップ 4は1.0-0.99=0.01となっています。

別の見方をすれば、Flipの値が0.00%と100%の場合は周期性がハッキリとしてして出力結果と長さ (ステップ数) が予測しやすいのですが、0.01%から99.9%の範囲では出力結果もステップ数も色々なランダム になると言えます。

あるいは確率論や統計学に詳しい方でしたらベルカーブをイメージすると分かりやすいかと思います。中間点 (50.00%) では完全なランダムで、そこから両端 (0.00%や100%の方向) へ離れていくほどランダム性が徐々に薄れていきます。

12.1.5.2. サンプル&ホールド

パラメータ ー	内容	レンジ		
Source	サンプルの元になるソースを選択します	5ソースを選択します 23種類		
Trigger	ソースの値をサンプルする際のトリガーを選択します 13種類			
Rise	前の値から次の値に移行する時間を設定します	0.00-4.00秒		
Fall	出力値がゼロに戻るまでの時間を設定します 0.00-4.00秒			
Link	RiseとFallの値を同じにします。オンの場合、Riseで両方の値を調節しま す	On, Off		
Rate	フリーラン (Hz) を含む4種類のシンク設定から1つを選択します	Hertz, Binary, Triplets, Dotted		

サンプル&ホールドはチューリングよりもよく知られていますが、ここにも見慣れないパラメーターを採 り入れています。

12.1.5.3. バイナリ

バイナリは黒か白、0か1といった数学的アプローチです。しかしあるタイミングで出力される0か1のどちらかをどうやって決めるのか?それがバイナリ・ジェネレーターの仕事です。つまり出力結果の予測可能性を調節することです。

パラ メー ター	内容	レンジ
Proba	出力が1になる確率を調節します	0.00 - 1.00 (0.001ス テップ)
Correl	Correl (correlation:相関性)は2つの連続した出力結果が同じになる可能性を調節します。この値が0 の場合、Probaパラメーターのみが動作します。1の場合、t+1(あるタイミングでの出力の次の出力結 果)が必ずt(あるタイミングでの出力結果)と同じになります。	0.00 - 1.00 (0.001ス テップ)
Rate	フリーラン (Hz) を含む4種類のシンク設定から1つを選択します	Hertz, Binary, Triplets, Dotted

12.1.6. コンビネートタブ

コンビネート機能はModソースを別のModソースで変化させたり、Modソース単体を変調させる機能で す。Pigmentsには2基のコンビネート機能があり、それをModソースに使用できます。

この機能の仕組みを理解するにはシンプルな操作例をやってみることですが、その前にパラメーターのリ ストをご紹介しておきます。

パラメーター	内容	レンジ
Source	変調されるModソースの選択	23種類
Mod	変調するModソースを選択します	23種類 (Typeの設定によっては非表示になります)
Туре	SourceをModで変調するタイプを選択します	8種類
Amount	SourceをModで変調する深さを調節します	0.00 - 1.00 (0.001ステップ)

以下の操作例をやってみてください。

- 1. デフォルト・プリセットを選択します。
- 2. Combinateタブを選択します。
- 3. Combinate 1を選び、SourceにLFO 1 (サイン波)、ModにLFO 2 (ノコギリ波) を選択します。
- Typeはデフォルト設定ではSumに、Amountは0.500になっています。Amountを最大 (1.00) にします。
- 5. LFOタブを開いてLFO 2のRateを1/4にします。この設定で効果が分かりやすくなります。
- 6. Combinateタブに戻ります。
- Amountを1.00から0.00へゆっくりと下げていき、波形の変化を観察します。Amountの値を 低くしていくとノコギリ波の尖った部分が小さくなっていき、最後にはそれがなくなってサ イン波に戻ります。
- 8. Amountを1.00に戻して波形を観察します。サイン波の形にノコギリ波が乗っているような 形になっています。
- 9. TypeをDifferenceに変えて波形を観察します。今度はノコギリ波の形にサイン波が乗ってい るような形になります。先ほどと真逆の結果になっています。
- Amountを1.00にしてTypeをMultiplyにして波形を観察し、次にTypeをDivideにして再び波 形を観察します。前よりも波形が激しく変化していますが、この仕組みを詳しく解説するの はあまりに技術的過ぎますので、この2つのタイプでは出力波形を非常に複雑にするのに便 利だということでご理解ください。
- TypeをCrossfadeにします。これはシンプルです。Amountが1.00でModのノコギリ波だけ になり、0.00ではSourceのサイン波だけになります。
- TypeをLagにします。この時、Modが非常になります。LagではSourceに入った値の山谷 を"丸め"ます。
- 13. 例えばSourceをLFO 2にします。波形は効果が分かりやすいノコギリ波にします。
- Amountを1.00から0.00にゆっくりと変えていき、また1.00に戻していきます。徐々にノコ ギリ波の形に戻っていき、再び波形が丸まっていき最後には波形全体がほとんど潰れた形に なります。
- 15. 以降の操作もSourceをLFO 2にしたままで行います。
- 16. Amountを0.00にしてTypeをThresholdにします。

- 1. 波形を見るとノコギリ波の下半分がスレッショルド以上に上がらなくなっています。
- 2. Amountを上げていくとノコギリ波の大部分がスレッショルド以下に落ち込んでいきます。
- 3. Amountを0.00にしてTypeをOffsetにします。
- Amountを0.00から1.00に上げながら波形を観察します。波形全体がプラス側に入るまでノ コギリ波の最低レベルが徐々に上がっていき、最後にはフラットな線になります。

♪: LFO 2の波形を三角波にしてSymmetryパラメーターを最低にするとノコギリ波になります。

12.1.6.1. タイプについて

Typeパラメーターでは、SourceとModをどのように処理するのかを選択します。

ある程度具体的な処理方法をタイプ別にまとめたのが下表です:

タイプ	処理方法 (数式)
Sum	Source + (Mod * Amount)
Diff	Source - (Mod * Amount)
Multiply	Source * Mod * Amount + Source * (1 - Amount)
Divide	Source / (Amount + Mod)
Crossfade	SourceとModをクロスフェード
Lag [p.171]	Sourceをローパスフィルターにかけます。Amountはフィルタリング量です
Threshold	Sourceをスレッショルド・レベルでカットします
Offset	Sourceをオフセットします。Amountはオフセット量です
Remap	ソースの出力をファンクションテーブルにリマッピングします

♪:上記の各処理方法による出力結果が-1.00や+1.00を超えることはありません。

12.1.6.2. Lag

Lagの処理方法を簡単にまとめると次のようになります:

- Amountの値が0.00の場合、コンビネートに入った信号はそのまま出力されます。
- Amountが0.500 (50%)の場合、入力信号の振幅の99%に達するのに500msec (0.5秒)かかります。
- Amountが1.00 (100%) の場合、入力信号の振幅の99%に達するのに5秒かかります。

12.1.6.3. 入力信号がポリフォニック/モノの場合

気になった方へ念のため:コンビネートに入力する信号のどちらかがポリフォニックの場合、出力もポ リフォニックになります。それ以外の場合、出力はモノになります。

12.2. マクロ

マクロには4つのユニポーラのノブがあり、モジュレーション・ルーティングをサイドチェイン込みで好 きな数だけアサインできます。マクロはMIDIメッセージにアサインでき、外部MIDIコントローラーでリ アルタイム・コントロールができます。

他のModソースでモジュレーション・ルーティングを構築できるのと同様に、マクロをモジュレーショ ン・ルーティングに使うこともできます:

- モジュレーション・オーバービューでマクロ1を選ぶにはM1を、マクロ2を選ぶにはM2を選 択します。モジュレーション・ルーティングを構築するにはModターゲットビュー [p.149] を使用します。マクロのベストな使用法の1つである、1つのソースで複数のパラメーターを コントロールするモジュレーションを作りたい場合、Modターゲットビューが便利です。こ の時、サイドチェイン [p.153]も設定できます。
- 1つのパラメーターをコントロールするModソースにマクロも加えたい場合はModソースビュー [p.147]を使用します。

マクロノブの下のネームフィールドをクリックすると名前を入力できます。

13. PIGMENTSのパラメーター

13.1. マスターグループ

パラメーター	Non-VSTパラメーター	内容
MasterVolume		Pigments全体の出力ボリューム
Macro1		複数のパラメーターを同時にコントロールできるマクロ
Macro2		
Macro3		
Macro4		

13.2. モジュレーション・ソースグループ

13.2.1. MIDI

パラメーター	Non-VSTパラメーター	内容
Glide		
Glide Mode		
BendUp		
BendDown		

13.2.2. エンベロープ (VCA, Env 2, Env 3)

パラメーター	Non-VSTパラメータ ー	内容
Env Attack		スタートから最大レベルに達するまでの時間
Env Decay		最大レベルからサステインレベルに到達するまでの時間
Env Sustain		ゲートソースがオンの間維持されるレベル
Env Release		ゲートソースが停止してからレベルが0になるまでの時間
Env AttackCurve		アタック部分のカーブ:指数カーブから対数カーブ、直線までの間で調節可能
Env DecayCurve		ディケイ部分のカーブ:指数カーブから対数カーブ、直線までの間で調節可能
Env ReleaseLink		リリースの設定値とスロープをディケイの設定と共通化
	Env VCA Gate Source	VCAエンベロープをトリガーするソース。受信MIDIノートに固定されています
	Env 2, 3 Gate Source	エンベロープをトリガーするソース選択
Env Mode		ADRに設定した場合はゲートソースの長さが無視されADRの各段階を設定どおり に実行

13.2.3. LFOs (1, 2, 3)

パラメーター	Non-VSTパラメー ター	内容
LFO Frequency		TLFOの周期設定:Hz単位
LFO Tempo Div		LFOの1周期にかかる拍数を設定
	LFO Sync Rate Type	LFO周期のテンポ同期/非同期を選択
LFO Waveform		波形がサイン波->三角波->矩形波にモーフィング:Phaseでスタート時のゼロクロ スポイントを調節
LFO Symmetry		波形を引き伸ばして変形:ノコギリ波やパルスウィズス的な波形を作成可能
LFO Polarity		LFO出力をプラスとマイナスがあるバイポーラまたはプラスのみのユニポーラのい ずれかに選択
	LFO Setting	LFO波形のモディファイア選択
LFO Initial Phase		LFOがリトリガーされた時の位相設定:0の場合は立ち上がりエッジのゼロクロスに リセット
LFO Smooth		LFO波形をローパスフィルタリングでスムーズ化
LFO KeyTrack		キーボードソースからの信号に応じてLFO周期を変更
LFO Fade		LFOリトリガー時にフェイドイン・エンベロープを適用

13.2.4. ファンクション (1, 2, 3)

パラメーター	Non-VSTパラメ ーター	内容
Function Rate		ファンクションの発振周期設定:Hz単位
Function Tempo Div		ファンクションの1周期にかかる拍数を設定
	Function Rate Type	ファンクション発振周期のテンポ同期/非同期選択
Function Bipolar		ファンクション出力をプラス/マイナスのあるバイポーラまたはプラスのみのユニポ ーラのいずれかに選択

13.2.5. ランダム (チューリング、サンプル&ホールド、バイナリ)

パラメータ ー	Non-VSTパラ メーター	内容
Turing Flip		出力信号の変化する確率を設定。0:変化なし、50%:完全にランダム、100%:ループ の都度前の出力シーケンスを反転逆再生
Turing Length		出力シーケンスの長さ設定:設定を長くすると出力値がより複雑に変化
Turing Unsync Rate		チューリング・モジュールの動作周波数設定:Hz単位
Turing Sync Rate		チューリング・モジュールの1周期にかかる拍数を設定
	Turing Sync Rate Type	チューリング・モジュールのテンポ同期/非同期選択
	S&H Source	サンプル&ホールド・モジュールのソース選択
S&H RiseTime		新しいサンプル値が前のサンプル値よりも高い場合、新しいサンプル値へフェイドする 時間を設定
S&H FallTime		新しいサンプル値が前のサンプル値よりも低い場合、新しいサンプル値へフェイドする 時間を設定
S&H LinkTimes		RiseTimeとFallTime設定を共通化
	S&H Trigger	サンプル&ホールド・モジュールのトリガー選択
S&H Unsync Rate		サンプル&ホールド・モジュールの動作周波数設定:Hz単位
S&H Sync Rate		サンプル&ホールド・モジュールの同期拍数設定
	S&H Sync Rate Type	サンプル&ホールド・モジュールのテンポ同期/非同期選択
Binary Proba		出力値 (0または1) の確率設定:設定値が低い場合は0を出力する確率が増大
Binary Correl		出力値を繰り返す確率を設定:設定値が高い場合は同様の出力値になる確率が増大
Binary Unsync Rate		バイナリ・モジュールの動作周波数設定:Hz単位
Binary Sync Rate		バイナリ・モジュールの同期拍数設定
	Binary Sync Rate Type	バイナリ・モジュールのテンポ同期/非同期選択
13.3. エンジン 1,2

13.3.1. ウェーブテーブル

パラメーター	Non-VSTパラ メーター	内容
Engine Bypass		エンジン1の無効化:エンジン1が動作しなくなり、発音を停止
Engine Wavetable Main Vol		ウェーブテーブル・オシレーターの音量調節
Engine Wavetable Mod Vol		モジュレーターの音量調節
Engine Wavetable Coarse		ウェーブテーブル・オシレーターのピッチ粗調整
	Wavetable Quantized Mod	ピッチ・モジュレーションに対するクォンタイズのオン/オフ切り替え
	Wavetable Quantized Scale	Coarse Tuneに対するモジュレーション信号受信時のピッチ・インターバル設定
Engine Wavetable Fine		ウェーブテーブル・オシレーターのピッチ微調整
Engine Wavetable Position		選択したウェープテーブルの波形選択
	Wavetable Morph	選択したウェーブテーブル内での波形モーフィングのオン/オフ切り替え
	Wavetable Modulator Wave	モジュレーターの波形設定
	Wavetable Mod Tuning Mode	モジュレーターのチューニング動作設定:ウェーブテーブル・オシレーターとの相対比 または独立設定、あるいはキーボードから切り離した状態で独立発振

パラメーター	Non-VSTパラ メーター	内容
Engine Wavetable Mod Coarse		モジュレーターのチューニング粗調整:最終的なモジュレーターのチューニ ングはTuning Modeで選択した設定で決定
Engine Wavetable Mod Freq		モジュレーターの発振周波数設定
Engine Wavetable Mod Fine		モジュレーターの発振周波数微調整
Engine Wavetable FM Amount		モジュレーターからウェーブテーブル・オシレーターへのフリケンシー・モ ジュレーションの変調量設定
Engine Wavetable FM Type		フリケンシー・モジュレーションのタイプ切り替え (リニア/エクスポネンシャ ル)
Engine Wavetable PM Amount		モジュレーターによるウェーブテーブル・オシレーターに対するフェイズ・ モジュレーションの変調量設定
Engine Wavetable Sync Source		オシレーター位相のリセットソース設定:MIDIノートでの位相リトリガーや ハードシンクが可能
Engine Wavetable Phase Distortion		ターゲットによるフェイズ・ディストーションの変調量設定
Engine Wavetable Ph Dist Mod		モジュレーターによるフェイズ・ディストーションの変調量設定
	Wavetable Ph Dist Target	フェイズ・ディストーションのターゲット選択
Engine Wavetable Fold Amount		ウェーブテーブルのウェーブフォールディング量を設定:倍音が豊富に生成
Engine Wavetable Fold Mod		モジュレーターによるウェーブフォールディング・モジュレーションの変調 量設定
	Wavetable Fold Shape	ウェーブフォールディングのシェイプ選択
Engine Wavetable Unison Mode		ユニゾンモードの動作設定:デチューン (クラシック) またはコード生成
Engine Wavetable Unison Voices		ユニゾンのボイス数設定
Engine Wavetable Unison Detune		ユニゾンボイス間のデチューン調節
Engine Wavetable Unison Stereo		ユニゾンボイスの定位スプレッド調節
Engine Wavetable Unison Chord		コードモード動作時のコード設定

13.3.2. アナログ

パラメーター	Non-VSTパラメータ ー	内容
Engine Analog Coarse		アナログ・オシレーターのピッチ粗調整
	Analog Quantized Mod	ピッチ・モジュレーションに対するクォンタイズのオン/オフ切り替え
	Analog Quantized Scale	Coarse Tuneに対するモジュレーション信号受信時のピッチ・インター バル設定
Engine Analog Fine Tune		アナログ・オシレーターのチューニング微調整
Engine Analog Drift		各ボイスのランダム性調節:コード演奏時に効果的
Engine Analog O1 Coarse		オシレーター1のピッチ粗調整
Engine Analog O2 Coarse		オシレーター2のピッチ粗調整
Engine Analog O3 Coarse		オシレーター3のピッチ粗調整
	O1 Sync	オシレーター1によるオシレーター2のハードシンクのオン/オフ切り替 え
	Analog O2 Key	オンの場合、オシレーター2がMIDIノートに追従
	Analog O3 Key	オンの場合、オシレーター3がMIDIノートに追従
Engine Analog O2 Fine		オシレーター2のチューニング微調整
Engine Analog O3 Fine		オシレーター3のチューニング微調整
	Engine Analog O1 Wave	オシレーター1の波形選択:三角波、矩形波ではパルス幅調節が可能
	Engine Analog O2 Wave	オシレーター2の波形選択:三角波、矩形波ではパルス幅調節が可能
	Engine Analog O3 Wave	オシレーター3の波形選択:三角波、矩形波ではパルス幅調節が可能

パラメーター	Non-VSTパ ラメーター	内容
Engine Analog O1 Width		オシレーター1の矩形波のパルス幅調節と三角波の波形調節 (ノコギリ波->三角波->ラン プ波)
Engine Analog O2 Width		オシレーター2の矩形波のパルス幅調節と三角波の波形調節 (ノコギリ波->三角波->ラン ブ波)
Engine Analog O3 Width		オシレーター3の矩形波のパルス幅調節と三角波の波形調節 (ノコギリ波〜三角波〜ラン プ波)
Engine Analog O1 Volume		オシレーター1の音量調節
Engine Analog O2 Volume		オシレーター2の音量調節
Engine Analog O3 Volume		オシレーター3の音量調節
Engine Volume		エンジン全体の音量調節
Engine Filter Mix		エンジンからフィルター1と2へのセンド量バランスの調節:フィルターがシリーズ接 続時でもフィルター2への送出が可能
Engine Analog Noise Source		ノイズソースのトーン調節:低域主体のレッドからフラットな特性のホワイト、高域 主体のブルーまで連続可変
Engine Analog Noise Volume		ノイズソースの音量調節
Engine Analog Mod Source		オシレーター3とノイズソースをFMソースに使用した場合のミックス調節:オシレータ ー1, 2の他、Mini, M-12, SEMフィルターの変調が可能
Engine Analog Mod Amount		Tオシレーター3/ノイズソースによるオシレーター1, 2へのFM変調量の調節

13.4. フィルター1,2

パラメーター	Non-VSTパラメ ーター	内容
F(n) On/Off		フィルターのオン/オフ切り替え:オフ時はフィルターを通過してVolumeとPanのみ 使用可能
	F(n) Type	フィルターのタイプ切替:各種ヴァーチャル・アナログ・フィルターの他、 Surgeon, Comb等選択可能
F(n) Cutoff		フィルターのカットオフ・フリケンシー調節
F(n) Resonance		フィルターのレゾナンス調節
F(n) SEM Mode		SEMフィルターのローパス/ハイパスのバランス調節:最低値ではバンドパス動作
	F(n) M12 Mode	M12フィルターのモード選択
	F(n) MultiFilter Mode	マルチモード・フィルターのモード選択
F(n) Drive		フィルター入力部でのオーバードライブ調節:倍音が増加
	F(n) Surgeon Mode	サージョン・フィルターのモード選択
F(n) Spread		サージョン・フィルターのローパスとハイパスのスプレッド調節
	F(n) Comb Mode	コム・フィルターのモード選択:フィードバックまたはフィードフォワード
F(n) Comb Freq		コム・フィルターの周波数調節:技術的には原音とフェイズがかかったコピーとの 間のディレイタイム調節
F(n) Comb Gain		コム・フィルターのゲイン調節:技術的にはフェイズがかかったコピーの音量調節
F(n) Comb Keytrack		コム・フィルターのキーボード・トラッキング量調節
	F(n) N Poles	フェイザー・フィルターのポール数設定

パラメーター	Non-VSTパラメーター	内容
F(n) Feedback		フェイザー・フィルターのフィードバック量調節
F(n) Frequency Shift		フォルマント・フィルターのベース・フリケンシー設定
F(n) Morph		各母音間のモーフィング調節
F(n) Q Factor		各母音のピーク強調量調節
F(n) Blend		原音とフィルター音のミックス調節
	F(n) FM Source	フィルターのフリケンシー・モジュレーションのソース選択
F(n) FM Amount		FMソースによる変調量調節
F(n) Volume		フィルター出力の音量調節
F(n) Pan		フィルターの定位調節

13.5. フィルタールーティング/アンプModセクション

パラメーター	Non-VSTパラメ ーター	内容
Filter Routing		2つのフィルターの接続をシリーズからパラレルまで連続可変:シリーズ接続時の接 続順はフィルター1->2
Amp Mod Amount		ボイスの音量モジュレーション:0の場合最大ボリュームで出力し、それ以外の場合 はModソースが有効
	Amp Mod Source	アンプ・モジュレーションのソース選択
Voice Pan		各ボイスの定位調節:ポリフォニックのソースでモジュレーションをかけると面白い ボイスパンニング効果に
Voice Send Level		センドFXバスへのセンド量調節:ポリフォニック対応のため、各ボイスで独立したFX センドを使用可能

13.6. エフェクト (FX) タブ

パラメーター	Non-VSTパラメーター	内容
	Bus A & B Routing	
FX(n) Bypass		
	FX(n) Type	
FX(n) Dry/Wet		
FX(n) Reverb Predelay		
FX(n) Reverb Decay		
FX(n) Reverb Damping		
FX(n) Reverb LowPass Freq		
FX(n) Reverb HighPass Freq		
FX(n) Reverb Size		
FX(n) Reverb Output MS Mix (Stereo)		
FX(n) ParamEq LowShelf fc		
FX(n) ParamEq LowShelf Gain		
FX(n) ParamEq LowShelf Q		
FX(n) ParamEq Peak 1 fc		
FX(n) ParamEq Peak 1 Gain		
FX(n) ParamEq Peak 1 Q		
FX(n) ParamEq Peak 2 fc		
FX(n) ParamEq Peak 2 Gain		
FX(n) ParamEq Peak 2 Q		
FX(n) ParamEq Peak 3 fc		
FX(n) ParamEq Peak 3 Gain		
FX(n) ParamEq Peak 3 Q		
FX(n) ParamEq HighShelf fc		
FX(n) ParamEq HighShelf Gain		
FX(n) ParamEq HighShelf Q		
FX(n) ParamEq Scale		
FX(n) Wavefolder Drive		
FX(n) Wavefolder Output Gain		

パラメーター	Non-VSTパラメーター	内容
	FX(n) Wavefolder Overload	
	FX(n) Wavefolder Type	
FX(n) Distortion Drive		
FX(n) Distortion Output Gain		
FX(n) Overdrive Drive		
FX(n) Overdrive Tone		
FX(n) Overdrive Level		
FX(n) Chorus Fix Delay		
FX(n) Chorus Depth		
FX(n) Chorus1 Frequency		
FX(n) Chorus Feedback		
FX(n) Chorus Stereo Mode		
	FX(n) Chorus Voices	
FX(n) Chorus LFO Shape		
FX(n) Phaser Frequency		
FX(n) Phaser N Poles		
FX(n) Phaser Feedback		
	FX(n) Phaser LFO Wave	
FX(n) Phaser LFO Amount		
FX(n) Phaser Rate Unsynced		
FX(n) Phaser Rate Synced		
	FX(n) Phaser Sync Rate Type	
FX(n) Phaser Stereo		
FX(n) Delay Time		
FX(n) Delay Synced		
	FX(n) Delay Rate Type	
FX(n) Delay Feedback		
FX(n) Delay HighPass fc		
FX(n) Delay LowPass fc		
FX(n) Delay Stereo Spread		
FX(n) Delay Stereo Mode		
FX(n) Multi Filter Mode		
FX(n) Filter Frequency		
FX(n) Filter Q		
FX(n) Filter Slope		

パラメーター	Non-VSTパラメーター	内容
FX(n) StereoPan Amount		
FX(n) StereoPan Rate Unsynced		
FX(n) StereoPan Rate Synced		
	FX(n) StereoPan Sync Rate Type	
FX(n) Flanger MinDelay		
FX(n) Flanger Depth		
FX(n) Flanger Rate		
FX(n) Flanger Sync Rate		
	FX(n) Flanger Sync Rate Type	
FX(n) Flanger Feedback		
FX(n) Flanger Feedback Polarity		
FX(n) Flanger Stereo		
FX(n) Flanger LowPass fc		
FX(n) Flanger HighPass fc		
FX(n) Flanger LFO Waveform		
FX(n) BitCrusher Bit Depth		
FX(n) BitCrusher Downsample		
FX(n) Compressor Threshold		
FX(n) Compressor Ratio		
FX(n) Compressor Attack		
FX(n) Compressor Release		
FX(n) Compressor Auto Make up		
FX(n) Compressor OutputGain		
	FX(n) Compressor OutGainReduction	
Bus A Volume		
Bus B Volume		
Bus Send Volume		

13.7. アルペジエイター/シーケンサー・パラメーター

パラメーター	Non-VSTパラメーター	内容
ArpSeq Swing		
	ArpSeq Rate Sync Type	
ArpSeq Unsync Rate		
ArpSeq Sync Rate		
ArpSeq Hold		
ArpSeq PolyRhythm		
	ArpSeq Realign	

14. ソフトウェア・ライセンス契約

ライセンシー料(お客様が支払ったアートリア製品代金の一部)により、アートリア社はライセンサーとしてお客様(被ライセンサー)にソフトウェアのコピーを使用する非独占的な権利を付与いたします。

ソフトウェアのすべての知的所有権は、アートリア社(以下アートリア)に帰属します。アートリアは、本 契約に示す契約の条件に従ってソフトウェアをコピー、ダウンロード、インストールをし、使用すること を許諾します。

本製品は不正コピーからの保護を目的としプロダクト・アクティベーションを含みます。OEMソフトウェアの使用はレジストレーション完了後にのみ可能となります。

インターネット接続は、アクティベーション・プロセスの間に必要となります。ソフトウェアのエンドユ ーザーによる使用の契約条件は下記の通りとなります。ソフトウェアをコンピューター上にインストール することによってこれらの条件に同意したものとみなします。慎重に以下の各条項をお読みください。こ れらの条件を承認できない場合にはソフトウェアのインストールを行わないでください。この場合、本 製品(すべての書類、ハードウェアを含む破損していないパッケージ)を、購入日から30日以内にご購入 いただいた販売店へ返品して払い戻しを受けてください。

1. ソフトウェアの所有権 お客様はソフトウェアが記録またはインストールされた媒体の所有権を有しま す。アートリアはディスクに記録されたソフトウェアならびに複製に伴って存在するいかなるメディア及 び形式で記録されるソフトウェアのすべての所有権を有します。この許諾契約ではオリジナルのソフトウ ェアそのものを販売するものではありません。

2. 譲渡の制限 お客様はソフトウェアを譲渡、レンタル、リース、転売、サブライセンス、貸与などの行 為を、アートリア社への書面による許諾無しに行うことは出来ません。また、譲渡等によってソフトウ ェアを取得した場合も、この契約の条件と権限に従うことになります。本契約で指定され、制限された権 限以外のソフトウェアの使用にかかる権利や興味を持たないものとします。アートリア社は、ソフトウェ アの使用に関して全ての権利を与えていないものとします。

3. ソフトウェアのアクティベーション アートリア社は、ソフトウェアの違法コピーからソフトウェアを 保護するためのライセンス・コントロールとしてOEMソフトウェアによる強制アクティベーションと強 制レジストレーションを使用する場合があります。本契約の条項、条件に同意しない限りソフトウェアは 動作しません。このような場合には、ソフトウェアを含む製品は、正当な理由があれば、購入後30日以 内であれば返金される場合があります。本条項11に関連する主張は適用されません。

4. 製品登録後のサポート、アップグレード、レジストレーション、アップデート 製品登録後は、以下の サポート・アップグレード、アップデートを受けることができます。新バージョン発表後1年間は、新バ ージョンおよび前バージョンのみサポートを提供します。アートリア社は、サポート (ホットライン、ウ ェブでのフォーラムなど)の体制や方法をアップデート、アップグレードのためにいつでも変更し、部分 的、または完全に改正することができます。製品登録は、アクティベーション・プロセス中、または後に インターネットを介していつでも行うことができます。このプロセスにおいて、上記の指定された目的の ために個人データの保管、及び使用(氏名、住所、メール・アドレス、ライセンス・データなど)に同意 するよう求められます。アートリア社は、サポートの目的、アップグレードの検証のために特定の代理 店、またはこれらの従事する第三者にこれらのデータを転送する場合があります。

5. 使用の制限 ソフトウェアは通常、数種類のファイルでソフトウェアの全機能が動作する構成になって います。ソフトウェアは単体で使用できる場合もあります。また、複数のファイル等で構成されている場 合、必ずしもそのすべてを使用したりインストールしたりする必要はありません。お客様は、ソフトウ ェアおよびその付随物を何らかの方法で改ざんすることはできません。また、その結果として新たな製 品とすることもできません。再配布や転売を目的としてソフトウェアそのものおよびその構成を改ざん するすることはできません。

6. 著作権 ソフトウェア及びマニュアル、パッケージなどの付随物には著作権があります。ソフトウェア の改ざん、統合、合併などを含む不正な複製と、付随物の複製は固く禁じます。このような不法複製がも たらす著作権侵害等のすべての責任は、お客様が負うものとします。

7. アップグレードとアップデート ソフトウェアのアップグレード、およびアップデートを行う場合、当 該ソフトウェアの旧バージョンまたは下位バージョンの有効なライセンスを所有している必要がありま す。第三者にこのソフトウェアの前バージョンや下位バージョンを譲渡した場合、ソフトウェアのアップ グレード、アップデートを行う権利を失効するものとします。アップグレードおよび最新版の取得は、ソ フトウェアの新たな権利を授けるものではありません。前バージョンおよび下位バージョンのサポート の権利は、最新版のインストールを行った時点で失効するものとします。 8. 限定保証 アートリア社は通常の使用下において、購入日より30日間、ソフトウェアが記録されたディ スクに瑕疵がないことを保証します。購入日については、領収書の日付をもって購入日の証明といたしま す。ソフトウェアのすべての黙示保証についても、購入日より30日間に制限されます。黙示の保証の存続 期間に関する制限が認められない地域においては、上記の制限事項が適用されない場合があります。アー トリア社は、すべてのプログラムおよび付随物が述べる内容について、いかなる場合も保証しません。プ ログラムの性能、品質によるすべての危険性はお客様のみが負担します。プログラムに瑕疵があると判明 した場合、お客様が、すべてのサービス、修理または修正に要する全費用を負担します。

9. 賠償 アートリア社が提供する補償はアートリア社の選択により (a) 購入代金の返金 (b) ディスクの交換 のいずれかになります。お客様がこの補償を受けるためには、アートリア社にソフトウェア購入時の領収 書をそえて商品を返却するものとします。この補償はソフトウェアの悪用、改ざん、誤用または事故に起 因する場合には無効となります。交換されたソフトウェアの補償期間は、最初のソフトウェアの補償期間 か30日間のどちらか長いほうになります。

10. その他の保証の免責 上記の保証はその他すべての保証に代わるもので、黙示の保証および商品性、特定の目的についての適合性を含み、これに限られません。アートリア社または販売代理店等の代表者またはスタッフによる、口頭もしくは書面による情報または助言の一切は、あらたな保証を行なったり、保証の範囲を広げるものではありません。

11. 付随する損害賠償の制限 アートリア社は、この商品の使用または使用不可に起因する直接的および間 接的な損害(業務の中断、損失、その他の商業的損害なども含む)について、アートリア社が当該損害を示 唆していた場合においても、一切の責任を負いません。地域により、黙示保証期間の限定、間接的または 付随的損害に対する責任の排除について認めていない場合があり、上記の限定保証が適用されない場合が あります。本限定保証は、お客様に特別な法的権利を付与するものですが、地域によりその他の権利も行 使することができます。